
WEB SECURITY MODEL

VITALY SHMATIKOV

most slides are from the Stanford Web security group

Browser

OS
Hardware

websiterequest

reply

Browser and Network

network

This is a distributed system!

HTTP: HyperText Transfer Protocol

Used to request and return data
◦ Methods: GET, POST, HEAD, …

Stateless request/response protocol
◦ Each request is independent of previous requests

Evolution
◦ HTTP 1.0: simple
◦ HTTP 1.1: more complex
◦ HTTP/2: derived from Google’s SPDY
◦ Reduces and speeds up the number of requests to render a page

Statelessness has a significant
impact on design and
implementation of applications

GET /default.asp HTTP/1.0
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Connection: Keep-Alive
If-Modified-Since: Sunday, 17-Apr-96 04:32:58 GMT

HTTP Request

Method Path HTTP version Headers

Data – none for GET

Blank line

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Response
HTTP version Status code Reason phrase Headers

Data

HTTP/2

A cookie is a file created by a website to store information in the browser

Browser
Server

POST login.cgi
username and pwd

Browser
ServerGET content.html

Cookie: NAME=VALUE

HTTP is a stateless protocol
Cookies add state

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send);
secure = (send only over HTTPS)
expires = (when expires) ;
HttpOnly

Cookies Add State to HTTP

Browser attaches automatically when visiting a site that’s in scope

What Are
Cookies

Used For?

Authentication
◦ Proves to the website that the user of this

browser previously authenticated correctly

Personalization
◦ Helps the website recognize the user from a

previous visit

Tracking
◦ Follow the user from site to site; learn his/her

browsing behavior, preferences, and so on

Goals of
Web Security

Safely browse the Web
◦ A malicious website cannot steal information from or

modify legitimate sites or otherwise harm the user…
◦ … even if visited concurrently with a legitimate site -

in a separate browser window, tab, or even iframe on
the same webpage

Support secure Web applications
◦ Applications delivered over the Web should have the

same security properties we require for standalone
applications

What are these properties?

All of These Should Be Safe

Safe to visit an evil website

Safe to visit two pages at the same time

Safe to delegate screen space

What is the common scenario for delegation?

Browser
website

Two Sides of Web Security

Responsible for securely
confining Web content
presented by visited
websites

Web applications
Online merchants, banks, Google Apps … Zoom
Mix of server-side and client-side code

• Server-side code written in PHP, Ruby, ASP, JSP…
runs on the Web server

• Client-side code written in JavaScript…
runs in the Web browser

Many potential bugs: XSS, XSRF, SQL injection

Browser
website

Browser’s View

Responsible for securely
confining Web content
presented by visited
websites

Potentially malicious!

website

website

Browser
website

Web Server’s View

Web applications
Online merchants, banks, Google Apps … Zoom
Mix of server-side and client-side code

• Server-side code written in PHP, Ruby, ASP, JSP…
runs on the Web server

• Client-side code written in JavaScript…
runs in the Web browser

Many potential bugs: XSS, XSRF, SQL injection

Potentially malicious!

Browser

OS
Hardware

websiterequest

reply

Where Does the Attacker Live?

network

Web
attackerNetwork

attacker

Malware
attacker

Web Threat Models

Web attacker

Network attacker
◦ Passive: wireless eavesdropper

◦ Active: evil Wi-Fi router, DNS poisoning

Malware attacker
◦ Malicious code executes directly on victim’s computer
◦ To infect victim’s computer, can exploit software bugs (e.g., buffer overflow) or

convince user to install malicious content (how?)
◦ Masquerade as an antivirus program, video codec, etc.

The goal of Web security is to
protect against these attacks

Web Attacker

Controls a malicious website (attacker.com)
◦ Can even obtain an SSL/TLS certificate for his site ($0)

User visits attacker.com
◦ Why? Phishing email, enticing content, search results,

link placed by an ad network, FB app, blind luck …

Attacker has no other access to user machine!

Variation: “iframe attacker”
◦ An iframe with malicious content included in an

otherwise honest webpage (syndicated advertising,
mashups, etc.)

OS vs. Browser Analogies

Primitives
◦ System calls

◦ Processes
◦ Disk

Principals: Users
◦ Discretionary access control

Vulnerabilities
◦ Buffer overflow

◦ Root exploit

Primitives
◦ Document object model

◦ Frames
◦ Cookies and localStorage

Principals: “Origins”
◦ Mandatory access control

Vulnerabilities
◦ Cross-site scripting

◦ Universal scripting

Operating system Web browser

Browser:
Basic Execution

Model

Each browser window or frame:
◦ Loads content

◦ Renders
◦ Processes HTML and executes scripts to display the page

◦ May involve images, subframes, etc.

◦ Responds to events

Events
◦ User actions: OnClick, OnMouseover
◦ Rendering: OnLoad, OnUnload

◦ Timing: setTimeout(), clearTimeout()

HTML and Scripts

<html>
…

<p> The script on this page adds two numbers
<script>

var num1, num2, sum
num1 = prompt("Enter first number")
num2 = prompt("Enter second number")
sum = parseInt(num1) + parseInt(num2)
alert("Sum = " + sum)

</script>
…

</html>

Browser receives content,
displays HTML and
executes scripts

Event-Driven Script Execution
<script type="text/javascript">

function whichButton(event) {
if (event.button==1) {

alert("You clicked the left mouse button!") }
else {

alert("You clicked the right mouse button!")
}}

</script>
…
<body onmousedown="whichButton(event)">
…
</body>

Function gets executed
when some event happens

Script defines a
page-specific function

JavaScript

“The world’s most misunderstood
programming language”

Language executed by the Web browser
◦ Scripts are embedded in webpages
◦ Can run before HTML is loaded, before page is

viewed, while it is being viewed, or when leaving
the page

Used to implement “active” webpages and
Web applications

A (potentially malicious) webpage gets to
execute some code on user’s machine

JavaScript History

Developed by Brendan Eich at Netscape
◦ Scripting language for Navigator 2

Later standardized for browser compatibility
◦ ECMAScript Edition 3 (aka JavaScript 1.5)

Related to Java in name only
◦ Name was part of a marketing deal
◦ “Java is to JavaScript as car is to carpet”

Various implementations available
◦ SpiderMonkey, RhinoJava, others

Common Uses
of JavaScript

Page embellishments and special effects

Dynamic content manipulation

Form validation

Navigation systems

Thousands of applications
◦ Google Docs, Google Maps, OS widgets…

Browser and Document Structure

W3C standard differs from models
supported in existing browsers

DOM tree

Document
Object Model

(DOM)

HTML page is structured data

DOM is object-oriented representation of the
hierarchical HTML structure
◦ Properties: document.alinkColor, document.URL,

document.forms[], document.links[], …
◦ Methods: document.write(document.referrer)

also Browser Object Model (BOM)
◦ Window, Document, Frames[], History, Location,

Navigator (type and version of browser)

These change the content of the page!

Sample script

1. document.getElementById('t1').nodeName
2. document.getElementById('t1').nodeValue
3. document.getElementById('t1').firstChild.nodeName
4. document.getElementById('t1').firstChild.firstChild.nodeName
5. document.getElementById('t1').firstChild.firstChild.nodeValue

<ul id="t1">
 Item 1

Sample HTML

Reading DOM with JavaScript

ul
null
li
text
Item 1

A text node below the "li"
which holds the actual text
data as its value

Some possibilities
◦ createElement(elementName)
◦ createTextNode(text)
◦ appendChild(newChild)
◦ removeChild(node)

Example: add a new list item
var list = document.getElementById('t1')
var newitem = document.createElement('li')
var newtext = document.createTextNode(text)
list.appendChild(newitem)
newitem.appendChild(newtext)

Manipulating DOM with JavaScript

Web Content Comes from Many Sources

Scripts

<script src=“//site.com/script.js”> </script>

Frames

<iframe src=“//site.com/frame.html”> </iframe>

Stylesheets (CSS)

<link rel=“stylesheet” type="text/css” href=“//site.com/theme.css" />

Flash objects using swfobject.js script (now obsolete)

JavaScript in
Webpages

Embedded in HTML as a <script> element
◦ Written directly inside a <script> element

<script> alert("Hello World!") </script>

◦ In a file linked as src attribute of a <script> element

<script type="text/JavaScript” src=“functions.js"></script>

Event handler attribute

Pseudo-URL referenced by a link
Click me

Browser Sandbox

Goal: safely execute JavaScript code provided by a website
◦ No direct file access, limited access to OS, network, browser data,

content that came from other websites

How: Same Origin Policy
◦ Scripts can only access properties of documents and windows from

the same domain, protocol, and port

Note: user can grant privileges to signed scripts
UniversalBrowserRead/Write, UniversalFileRead, UniversalSendMail

… don’t, unless you really
know what you’re doing

Same Origin Policy for DOM

Origin A can access origin B’s DOM
if A and B have same (protocol, domain, port)

protocol://domain:port/path?params

SOP for cookies is
a little different…

Applies to every
window and frame

Examples of Origins

These are different origins:
cannot access each other

http://cornell.edu

http://tech.cornell.edu

http://cornell.edu:8080

https://cornell.edu

These are the same origin:
can access each other

http://cornell.edu

http://cornell.edu:80

http://cornell.edu/academics

Setting Cookies by Server

Let’s look at the cookies
set by a typical website…

Setting Cookies by Server

scope

Browser
Server

GET …

HTTP Header:
Set-cookie: NAME=VALUE;

domain = (when to send);
path = (when to send);
secure = (only send over HTTPS);
expires = (when expires);
HttpOnly If NULL, this session only

Delete cookie by setting
“expires” to a past date

default scope:
domain and path
of the setting URL

both cookies are stored in browser’s storage (“cookie jar”)

both cookies are in scope of login.site.com

cookie 1
name = userid
value = test
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = test123
domain = .site.com
path = /
secure

distinct cookies

Cookie Are Identified by (domain, name, path)

SOP for Writing Cookies

Domain: any domain suffix
of URL-hostname except
top-level domain (TLD)

Path: anything

What cookies can be set by login.site.com?

allowed domains
login.site.com
.site.com

disallowed domains
user.site.com
othersite.com
.com

ü
û
û

û
ü

login.site.com can set cookies for all of .site.com
but not for another site or TLD

Problematic for sites like .cornell.edu

If not specified, then set to
the hostname from which
the cookie was received

Sending Cookies by Browser

Browser automatically sends all cookies in URL scope:

• cookie-domain is domain-suffix of URL-domain

• cookie-path is prefix of URL-path

• protocol=HTTPS if cookie is “secure”

GET //URL-domain/URL-path
Cookie: NAME = VALUE

SOP for Sending Cookies by Browser

Browser
Server

http://checkout.site.com/

http://login.site.com/

https://login.site.com/

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

both set by login.site.com

cookie: userid=u2

cookie: userid=u2

cookie: userid=u1; userid=u2
(order is browser-specific)

Examples of Cookie-Sending SOP

What Does The Server
Know About the Cookie
Sent by the Browser?

Server only sees Cookie: Name=Value

Does not see cookie attributes (e.g., “secure”)

Does not see which domain set the cookie
RFC 2109 (cookie RFC) has an option for including
domain, path in Cookie header, but not supported
by browsers

Who Set the Cookie?

login.cornell.edu
sets session-id cookie
for cornell.edu

evil.cornell.edu

overwrites .cornell.edu session-id cookie
with session-id of user “badguy”
… not a violation of SOP (why?)

cs5435.cornell.edu
session-id cookie
of “badguy”

• Expects session-id cookie
from login.cornell.edu,

• Cannot tell it was overwritten
• Thinks it’s talking to ”bad guy”

Accessing
Cookies via

DOM

Same domain scoping rules as for sending
cookies to the server (path ignored!)

document.cookie returns a string with all cookies
available for the document
◦ Often used in JavaScript to customize page

JavaScript can set and delete cookies via DOM
document.cookie = “name=value; expires=…; ”
document.cookie = “name=; expires= Thu, 01-Jan-70”

SOP Quiz #1

Are cookies set by cs.cornell.edu/shmat sent to
… cs.cornell.edu/greg ?
… cs.cornell.edu ?

Are my cookies secure from the dean?

const iframe = document.createElement("iframe");
iframe.src = “https://cs.cornell.edu/shmat”;
document.body.appendChild(iframe);
alert(iframe.contentWindow.document.cookie);

Path Separation Is Not Secure

Cookie SOP: Path Separation

When the browser visits x.com/A, it does not

automatically send the cookies of x.com/B

This is done for efficiency, not security!

DOM SOP: No Path Separation

Script from x.com/A can read DOM of x.com/B

<iframe src=“x.com/B"></iframe>

alert(frames[0].document.cookie);

SOP Does Not
Control Sending

Same origin policy (SOP)
controls access to DOM

Scripts can send anywhere!
◦ No user involvement required
◦ Can only read response from

the same origin

Sending via
Cross-Domain

GET

Data must be URL encoded

•
• Browser sends
GET file.cgi?foo=1&bar=x%20y HTTP/1.1 to othersite.com

Can’t send to some restricted ports

• For example, port 25 (SMTP)

Can use GET for denial of service (DoS) attacks

• Distribute attack script to issue many GETs to victim site

Using Images to Send Data

Encode data in the image’s URL

Hide the fetched image

Key point:
a webpage can send
information to any site!

Site A

Site B

GET

SOP for HTTP Responses

Images
◦ Browser renders cross-origin images, but enclosing page cannot inspect

pixels (ok to check if loaded, size)

CSS, fonts
◦ Can load and use, but not directly inspect

Frames
◦ Can load cross-origin HTML in frames, cannot inspect or modify content

https://a.com

bank.com

attacker.com

✗
attacker.com bank.com

Importing Scripts

<script src=“/js/jquery.min.js”></script>

bank.com

Same origin policy does not apply to directly included scripts
(not confined in an iframe)

This script has privileges of bank.com,
can change any content from bank.com origin

Sub-Resource Integrity Problem

biz.comtop-level page

code.jquery.com

sub-resource

<script src=“https://code.jquery.com/jquery-3.5.1.min.js”

</script>

bad
content

Sub-Resource Integrity (SRI)

<script src=“https://code.jquery.com/jquery-3.5.1.min.js”
integrity="sha256-9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphbbj0=”
crossorigin="anonymous">

</script>

<link rel='stylesheet’
type='text/css’ href='https://example.com/style.css’

integrity="sha256-9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphbbj0=”
crossorigin="anonymous">

Precomputed hash of the sub-resource

The browser loads sub-resource, computes hash of contents,
raises error if hash doesn’t match the attribute

Enforcing SRI Using CSP

biz.com

HTTP/1.1 200 OK
…
Content-Security-Policy: require-sri-for script style;
…

Requires SRI for all scripts and style sheets on page

Frames

Browser window may contain frames
from different origins
◦ frame: rigid division as part of frameset

◦ iframe: floating inline frame

<IFRAME SRC="hello.html" WIDTH=450 HEIGHT=100>
If you can see this, your browser doesn't understand IFRAME.
</IFRAME>

Delegate screen area to content from
another source (eg, advertising)

Browser provides isolation based on frames

Parent may work even if frame is broken

Each frame of a page has an origin
◦ Origin = protocol://domain:port

Frame can access objects from its
own origin
◦ Network access, read/write DOM,

cookies and localStorage

Frame cannot access objects
associated with other origins

A A

B

B
A

Same Origin Policy for Frames

BroadcastChannel API

Script can send messages to
other browsing contexts
(windows, frames, etc.) in the
same origin

Publish/subscribe message bus

// Connect to the channel named "my_bus".
const channel = new BroadcastChannel('my_bus');

// Send a message on "my_bus".
channel.postMessage('This is a test message.');

// Listen for messages on "my_bus".
channel.onmessage = function(e) {
console.log('Received', e.data);

};

// Close the channel when you're done.
channel.close();

http://example.com

Frame A

Origin: cdn.facebook.com

facebook.com

Can These Communicate?

change document.domain to super-domain

a.domain.com → domain.com OK

b.domain.com → domain.com OK

a.domain.com → com NOT OK

a.domain.co.uk → co.uk NOT OK

Domain Relaxation

Domain Relaxation

http://example.com

Frame: cdn.facebook.com

facebook.com

<script>
document.domain = facebook.com

</script>

How About This?

http://example.com

Frame: github.io

cs5435.github.io

<script>
document.domain = github.io

</script>

Cross-Origin Communication

Cross-origin client-side communication
◦ postMessage

◦ Client-side messaging via fragment
navigation (obsolete)

Cross-origin network requests

Site BSite A

Site A context Site B context

postMessage API for Inter-Frame Communication

Many security issues related to origin checks on messages

JavaScript Can Make Network Requests
let xhr = new XMLHttpRequest();
xhr.open('GET', “/article/example”);
xhr.send();
xhr.onload = function() {
if (xhr.status == 200) {
alert(`Done, got ${xhr.response.length} bytes`);

}
};

// ...or... with jQuery
$.ajax({url: “/article/example“,
success: function(result){

$("#div1").html(result);
}});

Cross-Origin
JS Requests

Cannot make requests to a different origin
unless allowed by the destination

Can only read responses from the same origin
(unless allowed by destination origin)

XMLHttpRequests are policed by

CORS: Cross-Origin Resource Sharing

CORS

Reading permission on the server
◦ Access-Control-Allow-Origin: <list of domains>

Sending permission
◦ “In-flight” check if the server is willing to receive the request

Typical usage: Access-Control-Allow-Origin: *

CORS Example
$.post({url:
“api.c.com/x“,

success: function(r){
$("#div1").html(r);

}
});

POST /x

OPTIONS /x

Header:
Access-Control-Allow-Origin: http://app.c.com

POST /x

DATA

origin: api.c.com

origin: app.c.com

CORS Example
$.post({url:
“api.c.com/x“,

success: function(r){
$("#div1").html(r);

}
});

POST /x

OPTIONS /x

Header:
Access-Control-Allow-Origin: *

POST /x

DATA

origin: api.c.com

origin: app.c.com

CORS Example
$.post({url:
“api.c.com/x“,

success: function(r){
$("#div1").html(r);

}
});

POST /x

OPTIONS /x

Header:
Access-Control-Allow-Origin: www.c.com

origin: api.c.com

origin: app.c.com

