
CROSS-SITE REQUEST FORGERY
SERVER-SIDE REQUEST FORGERY

CLICKJACKING

VITALY SHMATIKOV

Delegation and Access Control

protected resource

trusted “deputy”

(API, server, etc.)

only accepts access requests
from trusted deputy

Ok!

Denied!

Confused Deputy

protected resource

trusted “deputy”

(API, server, etc.)

only accepts access requests
from trusted deputy

Ok!

Hardy. “The Confused Deputy,
or why capabilities might have
been invented” (1988).

ServerBrowser
POST/login.cgi

Set-cookie: authenticator

GET…
Cookie: authenticator

response

Cookies-Based Authentication

XSRF True Story (1)

◦ User has a Java stock ticker from his broker’s website running in his browser
◦ Ticker has a cookie to access user’s account on the site

◦ A comment on a public message board on finance.yahoo.com points to
“leaked news”
◦ TinyURL redirects to cybervillians.com/news.html

◦ User spends a minute reading a story, gets bored, leaves the news site

◦ Gets his monthly statement from the broker - $5,000 transferred out of his
account!

Source: Alex Stamos

XSRF True Story (2)

Internet Exploder

CyberVillians.com

StockBroker.com

ticker.stockbroker.com
Java

GET news.html

HTML and JS
www.cybervillians.com/news.html

B er nank e R eal l y an Al i en?

script
HTML Form POSTs

Hidden iframes submitted forms that…
• Changed user’s email notification settings
• Linked a new checking account
• Transferred out $5,000
• Unlinked the account
• Restored email notifications

Source: Alex Stamos

Browser
Sandbox
Redux

Based on the same origin policy (SOP)

Active content (scripts) can send anywhere
• Except for some ports such as SMTP

Can only read response from the same origin

User credentials

Cookie: SessionID=523FA4cd2E

Cross-Site Request Forgery

Cross-Site
Request
Forgery

User logs into bank.com, forgets to sign off
• Session cookie remains in browser state

User then visits a malicious website containing

<form name=BillPayForm

action=http://bank.com/BillPay.php>

<input name=recipient value=badguy> …

<script> document.BillPayForm.submit(); </script>

Browser submits the form + cookie, payment
request fulfilled!

Cookie authentication is not sufficient
when side effects can happen!

User is tricked into
visiting a malicious site

Malicious script detects
victim’s address
◦ Socket back to

malicious host, read
socket’s address

Next step: reprogram the
router

Stamm et al. ”Drive-By Pharming”(2006)

Drive-By Pharming

Finding the Router

Script from a malicious site can scan local network without
violating the same origin policy!
◦ Pretend to fetch an image from an IP address
◦ Detect success using onError

Determine router type by the image it serves

Basic JavaScript function,
triggered when error occurs
loading a document or an
image… can have a handler

Server
Malicious
webpage

Firewall

1) “show me dancing pigs!”

2) “check this out”

Browser

scan

scan
scan

3) port scan results

Sample JavaScript Code
<html><body>
<script>

var test = document.getElementById(’test’);
var start = new Date();
test.onerror = function() {

var end = new Date();
alert("Total time: " + (end - start));

}
test.src = "http://www.example.com/page.html";

</script>
</body></html> When response header indicates that page is not an image, the

browser stops and notifies JavaScript via the onError handle

Reprogramming
the Router

Log into router
◦ 50% of home users use a broadband router with default or

no password (2006 statistics)
<script src=“http://admin:password@192.168.0.1”></script>

◦ Or post a forged form to update the router config (cross-
site request forgery)

Replace DNS server address with address of an
attacker-controlled DNS server

Risks of Drive-By Pharming

Completely 0wn the victim’s Internet connection

Undetectable phishing: user goes to a financial
site, attacker’s DNS gives IP of attacker’s site

Subvert anti-virus updates, etc.

Web attacker becomes a network attacker (more powerful!)

XSRF Defenses

Secret validation token

Referer validation

Custom HTTP header

<input type=hidden value=23a3af01b>

Referer:
http://www.facebook.com/home.php

X-Requested-By: XMLHttpRequest

Add Secret Token to Forms

Hash of user ID
• Can be forged by attacker

Session ID
• If attacker has access to HTML or URL of the page (how?), can learn session ID

Session-independent nonce – Trac
• Can be overwritten by subdomains, network attackers

Need to bind session ID to the token
• CSRFx, CSRFGuard - manage state table at the server
• Keyed HMAC of session ID – no extra state!

<input type=hidden value=23a3af01b>

Secret Token: Example

Referer Validation

Lenient referer checking – header is optional

Strict referer checking – header is required

Referer:
http://www.facebook.com/home.php

Referer:
http://www.evil.com/attack.html

Referer:

ü
û
?

Why Not Always
Strict Checking?

The referer header might be suppressed
• Stripped by the organization’s network filter
• For example,

http://intranet.corp.apple.com/projects/iphone/competitors.html

• Stripped by the local machine

• Stripped by the browser for HTTPS ® HTTP transitions

• User preference in browser

• Buggy browser

Web applications can’t afford to block these users

Referer header rarely suppressed over HTTPS

Custom Header Forces Pre-Flight Check

XMLHttpRequest is for same-origin requests

For XMLHttpRequest to other origins, browser performs a “pre-flight” CORS
check to see if the destination is willing to receive the request
• … but typical GETs and POSTs don’t require pre-flight check even if XMLHttpRequest

Adding a custom header to XMLHttpRequest forces pre-flight check because
sites can only send custom headers to themselves, not other origins

Use X-Requested-By or X-Requested-With

X-Requested-By: XMLHttpRequest

SameSite Cookies

Browser
Server

GET …

HTTP Header:
Set-cookie: NAME=VALUE;

domain = (when to send);
path = (when to send);
secure = (only send over HTTPS);
expires = (when expires);
HttpOnly
SameSite = {lax | strict}

strict = cookie won’t be sent even if user follows normal link
lax = cookie won’t be sent with XSRF-prone methods like POST

Broader View of
XSRF

Abuse of cross-site data export
• SOP does not control data export

• Malicious webpage can initiate requests from the
user’s browser to an honest server

• Server thinks requests are part of the established
session between the browser and the server

Many reasons for XSRF attacks, not just
“session riding”

Login XSRF

Referer Header Should Help, Right?

Laundering Referer Header

referer: http://www.siteA.com

referer: ??? (browser-dependent)

siteB

Identity
Misbinding

Attacks

User’s browser logs into website, but the
session is associated with the attacker
• Capture user’s private information (Web

searches, sent email, etc.)
• Present user with malicious content

Many examples
• Login XSRF
• OpenID

• PHP cookieless authentication

PHP Cookieless Authentication

Confused Deputies Are Everywhere

protected resource

trusted “deputy”

(API, server, etc.)

only accepts access requests
from trusted deputy

Ok!

A girl is babysitting children in their home
When the children are asleep upstairs, she
is getting ominous calls asking her if she
has checked on them
The babysitter calls the police
The police trace the call and tell her …

This is what server-side
request forgery all about

https://www.hackerone.com/application-security/how-server-side-request-forgery-ssrf

Ok

No

over HTTP ‘cause
internal network…

Will only connect to internal ports!
But does not apply to HTTP redirects…

Ok

https://www.hackerone.com/application-security/how-server-side-request-forgery-ssrf

hack-box-01 $ curl http://web-
server.com:4567/\?url\=http://10.0.0.2/

redirect

<html><head><title>Internal admin
panel</title></head>...</html>

https://www.hackerone.com/application-security/how-server-side-request-forgery-ssrf

hack-box-01 $ curl http://web-
server.com:4567/\?url\=http://10.0.0.2/

redirect

Must parse and check
URL before redirecting!

Bypassing URL checks
• Use the decimal IP notation http://167772162/ instead

of http://10.0.0.2/.
• DNS rebinding: create a DNS A record that points to

10.0.0.2 and use http://subdomain.yourdomain.com/.
• Redirect from a whitelisted host

Any Indirect Access Is Prone to SSRF!

Webhooks
• Look for services that make HTTP requests when certain events happen. In most webhook features, the end user can choose their

own endpoint and hostname. Try to send HTTP requests to internal services.

PDF generators
• Try injecting <iframe>, , <base> or <script> elements or CSS url() functions pointing to internal services.

Document parsers
• Try to discover how the document is parsed. In case it’s an XML document, use the PDF generator approach. For all other

documents, see if there’s a way to reference external resources and let the server make requests to an internal service.

Link expansion
• Example: Twitter link expansion

File uploads
• Instead of uploading a file, try sending a URL and see if it downloads the content of the URL.

https://www.hackerone.com/application-security/how-server-side-request-forgery-ssrf

AWS Metadata Service

https://ejj.io/blog/capital-one

Good design!
Instead of directly handling IAM keys to
access S3, use metadata service to obtain
temporary credentials

Multiple VMs on Same Hypervisor

https://ejj.io/blog/capital-one

Much more about
VM security later…

”Internal” service that runs on
the hypervisor. No HTTPS, no
authentication, no authorization.

Understanding the 2019 Capital One Attack

… a vulnerability in the WAF [Web Application Firewall] allowed
a “Server Side Request Forgery” (SSRF) attack where the
attacker manipulates a vulnerable web server to make new http
requests on its behalf to access resources that the attacker
should not have direct access to. The resource in this case was
the AWS metadata service.

https://securityboulevard.com/2020/12/understanding-the-2019-capital-one-attack/

Paige Thompson,
the Capital One hacker

Headline:
Krebs on Security

Early Jan 2021: four previously unknown (“zero-day”) vulnerabilities in
the Microsoft Exchange server

#1: use SSRF to login into an administrator’s account without authentication
#2: gain ability to execute code (via insecure deserialization + stolen credentials)
#3, #4: inject malicious code into any path on the server

Feb 23: Microsoft gives early warning and “proof-of-concept” attack
code to its security partners via Microsoft Active Protections Program
Feb 27-28: wave of attacks, attackers install backdoors to return later
Mar 2: Microsoft pushes patches to Exchange software

250,000 Exchange servers compromised worldwide

Exploiting SSRF
in MS Exchange

Attacker sends a POST request for a static file
in a directory readable without authentication
(presence of the file not required)

The body of the POST request will be
redirected to any internal service
specified in the X-BEResource cookie

The service thinks the request is
coming from the mail-server account

Attacker then uses other
vulnerabilities to overwrite files
and inject malicious code

https://bi-zone.medium.com/hunting-down-ms-exchange-attacks-part-
1-proxylogon-cve-2021-26855-26858-27065-26857-6e885c5f197c

Mobile users in South Africa are very often subscribed to mobile
services without their consent… South Africans are mostly at risk
from a very basic fraudulent mobile activity, clickjacking.
“Clickjacking is a type of mobile-based fraud that is more than five
years old and could be blocked very quickly if local market players
took this threat seriously.”

https://www.evina.com/press-releases/south-africa-has-a-massive-mobile-fraud-problem/

Clickjacking (UI Redressing)

Hansen and Grossman (2008)

Attacker overlays multiple
transparent or opaque frames
to trick a user into clicking

Clicks meant for the visible
page are hijacked and routed
to another, invisible page

It’s All About the iFrame

◦ Any site can frame any other site
<iframe

src=“http://www.google.com/...”>
</iframe>

◦ HTML attributes: style, opacity
◦ Opacity defines visibility percentage of

the iframe
◦ 1.0: completely visible

◦ 0.0: completely invisible

Hiding the Target Element

Click

z-index: -1

opacity: 0.1 pointer-event: none

Click

“Clickjacking: Attacks and Defenses”

Use CSS opacity property and z-index
property to hide target element and make
other element float under the target element

Use CSS pointer-events: none
property to cover other element over
the target element

Partial Overlays and Cropping

“Clickjacking: Attacks and Defenses”

Overlay other elements onto an iframe using
CSS z-index property or Flash Window
Mode wmode=direct property

Wrap target element in a new iframe and
choose CSS position offset properties

z-index: 1 PayPal iframe PayPal iframe

How to Block Framing with CSP

example.comweb browser

HTTP response from server

HTTP/1.1 200 OK
…
Content-Security-Policy: frame-ancestors 'none’;
…

<iframe src=‘example.com’>
will cause an error

frame-ancestors ‘self’ ;
means only example.com
can frame page

Frame Busting

I am a page owner

All I need to do is make sure that my web page is not loaded in an enclosing
frame … Clickjacking: solved!
◦ Does not work for FB “Like” buttons and such, but Ok

How hard can this be?

if (top != self)
top.location.href = location.href

Conditional Statements

if (top != self)

if (top.location != self.location)

if (top.location != location)

if (parent.frames.length > 0)

if (window != top)

if (window.top !== window.self)

if (window.self != window.top)

if (parent && parent != window)

if (parent &&
parent.frames &&

parent.frames.length>0)

if((self.parent&&
!(self.parent===self))&&

(self.parent.frames.length!=0))

If My Frame Is Not On Top, Move It To Top
Counter-Action Statements

top.location = self.location

top.location.href = document.location.href

top.location.href = self.location.href

top.location.replace(self.location)

top.location.href = window.location.href

top.location.replace(document.location)

top.location.href = window.location.href

top.location.href = "URL"

document.write(’’)

top.location = location

top.location.replace(document.location)

top.location.replace(’URL’)

top.location.href = document.location

top.location.replace(window.location.href)

top.location.href = location.href

self.parent.location = document.location

parent.location.href = self.document.location

top.location.href = self.location

top.location = window.location

top.location.replace(window.location.pathname)

What About My Own iFrames?

Check: is the enclosing frame one of my own?

How hard can this be?

Survey of by Rydstedt et al. of several hundred
top websites …

… all frame busting code is broken!

if (top.location != location) {

if(document.referer &&

document.referer.indexOf("walmart.com") == -1)

{

top.location.replace(document.location.href);

}

}

http://www.attacker.com/walmart.com.html

Checks if the URL contains walmart.com

if (window.self != window.top &&

!document.referer.match(

/https?:\/\/[^?\/]+\.nytimes\.com\//))

{

self.location = top.location;

}

http://www.attacker.com/a.html?b=https://www.nytimes.com/

Checks if the URL ends with nytimes.com

if (self != top) {

var domain = getDomain(document.referer);

var okDomains = /usbank|localhost|usbnet/;

var matchDomain = domain.search(okDomains);

if (matchDomain == -1) {

// frame bust

}

}
Checks if the domain name contains usbank, localhost, or usbnet

http://usbank.attacker.com/

Norwegian State House Bank
http://www.husbanken.no

Bank of Moscow
http://www.rusbank.org

Tap-jacking

User visits a gaming website…

◦ Can zoom, auto scroll

◦ Website zooms buttons in a transparent
frame so they cover entire screen

◦ … hides or fakes URL bar

◦ … imitates a known app to trick user into
clicking
◦ Ex: display incoming text message screen,

but frame Twitter

CONFUSED
DEPUTIES ARE
EVERYWHERE

