
ADVENTURES IN TLS

VITALY SHMATIKOV

SSL/TLS

Secure Sockets Layer and Transport Layer Security protocols
◦ Same protocol design, different cryptographic algorithms

The de facto standard for Internet security
◦ “The primary goal of the TLS protocol is to provide privacy and data

integrity between two communicating applications”

Deployed in every Web browser (HTTPS); also mobile applications,
payment systems, VoIP, many distributed systems, etc.

HTTPS Adoption by Websites

https://transparencyreport.google.com/https/overview

SSL / TLS
Guarantees

End-to-end secure communications in
the presence of a network attacker
◦ Attacker completely 0wns the network:

controls Wi-Fi, DNS, routers, his own
websites, can listen to any packet, modify
packets in transit, inject his own packets
into the network

Scenario: you are reading your email
from an Internet café connected via a
r00ted Wi-Fi access point to a dodgy
ISP in a hostile authoritarian country

TLS Threat Model

5

ISP1 ISP2

Back
bone

ISP3 destination

DNS server

but not the endpoints

Remember TCP/IP, BGP, DNS attacks?
TLS is all that stands between us and oblivion…

Establishing a Secure Channel

Client Server

Handshake protocol:
use public-key cryptography to
authenticate each other,
establish shared symmetric keys

Record protocol:
use symmetric keys to protect
confidentiality, integrity,
authenticity of exchanged data

Keys established

Data

SSL/TLS
Handshake

Protocol

Negotiate version of the protocol and the set
of cryptographic algorithms to be used
◦ Interoperability between different implementations

Authenticate server and client (optional)
◦ Use digital certificates to learn each other’s public

keys and verify each other’s identity
◦ Often only the server is authenticated

Use public keys to establish a shared secret

“Core” SSL/TLS Handshake

C

versions, suites, Ns,
certificate for PKs,
“ServerHelloDone”

S

C, versionc, suitesc, Nc

{Secretc}PKs if using RSA

switch to keys derived
from secretc , Nc , Ns

C and S share secret key material (secretc)

switch to keys derived
from secretc , Nc , Ns

FinishedFinished

Crypto
primitives

• RSA, DSA,
ECDSA

• Diffie–Hellman,
ECDH

• HMAC
• MD5, SHA1,

SHA-2
• DES, 3DES, RC4,

AES
• Export grade

Ciphersuite
details

• Data structures
• Key derivation
• Encryption

modes, IVs
• Padding

Advanced
functionality

• Alerts & errors
• Certification /

revocation
• Negotiation
• Renegotiation
• Session

resumption
• Key reuse
• Compression
• State machine

Libraries

• OpenSSL
• LibreSSL,

BoringSSL
• NSS
• GnuTLS
• SChannel
• Java JSSE
• Everest / miTLS
• s2n

Applications

• Web browsers:
Chrome, Firefox,
IE/Edge, Safari

• Web servers:
Apache, IIS,
nginx, node, …

• Application
SDKs

• Certificates
• Protocols

• HTTP, IMAP, ..

Cross-protocol

DH/ECDH attack

RC4 biases,
rc4nomore,
Bar Mitzvah

CRIME, BREACH, HEIST

Triple handshake
attack

goto
fail;

Goldberg &
Wagner

Netscape
PRNG attack

FREAK, Logjam

Sweet32

Lucky13

Termination,
Cookie Cutter

Bleichenbacher

SSL 2.0
downgrade,

FREAK, Logjam

POODLE
ZombiePOODLE
GoldenDOODLE

BEAST

Cross-protocol
DH/ECDH attack

SLOTH

Bleichenbacher,

Collisions

Ray & Dispensa

Debian
OpenSSL

entropy bug

“M
ost dangerous code…”

M
alloDroid

CCS
injection

BERserk

Heartbleed

CA breaches

Frankencerts

Virtual host
confusion

SSL strippingSMACK

STARTTLS

injectio
n

Lucky
microseconds

Jager et al.
DROWN

Selfie

High-

STEKs

Attacks
on TLS

Source: Douglas Stebila
(2019-06-06)

TLS Heartbeat

C

If you are alive, send me
this 5-letter word: “xyzzy”

“xyzzy”

S

A way to keep TLS connection alive
without constantly transferring data

Per RFC 6520:
struct {
HeartbeatMessageType type;
uint16 payload_length;
opaque payload[HeartbeatMessage.payload_length];
opaque padding[padding_length];
} HeartbeatMessage;

OpenSSL omitted to check
that this value matches the
actual length of the
heartbeat message

Heartbleed Consequences

Attacker can obtain chunks of server memory
◦ Passwords, contents of other users’ communications,

even the server’s private RSA key

Assisted by a custom allocator that does not zero
out malloc’d memory (for “performance,” natch!)

TLS with Diffie-Hellman

C

DHE, Ns,
certificate for RSA public key,
p, g, ga, signRSAkey(Nc,Ns,p,g,ga)

S

crypto suites (incl. DHE), Nc

gb

switch to derived keys

C and S share secret gab

switch to derived keys

Finished
Finished

Ciphersuite is not signed

Integrity
protection

DH Downgrade by MITM

C

DHE, Ns,
certificate for RSA public key,
p, g, ga, signRSAkey(Nc,Ns,p,g,ga)

S

crypto suites (incl. DHE), Nc

gb

C and S share secret gab

“Export-grade” DHE, Nc

“Export-grade” Diffie-Hellman:
97% of hosts use one of three 512-bit primes
With 1 week of precomputation, takes 70 seconds
of real time to compute discrete log

LOGJAM attack

Padding oracles
Compression oracles
Downgrades to export cryptography
… many other attacks over the years

More Fun with Diffie-Hellman

C

DHE, Ns,
certificate for RSA public key,
p, g, ga, signRSAkey(Nc,Ns,p,g,ga)

S

crypto suites (incl. DHE), Nc

gb

switch to derived keys

C and S share secret gab

switch to derived keys

… then verify the signature on the DH value
using the public key from the certificate

Validate the server’s certificate

MITM Presenting a Valid Certificate

Hello

Here is PayPal’s certificate for its RSA signing key
And here is my signed Diffie-Hellman value

I am PayPal.com (or whoever you want me to be)

… then verify the signature on the DH value
using the public key from the certificate

Validate the server’s certificate

Goto Fail Here is PayPal’s certificate
And here is my signed Diffie-Hellman value

… verify the signature on the DH value using
the public key from the certificate

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail; …

err = sslRawVerify(...);
…
fail: … return err …

Signature is verified here

???

Complete Fail Against MITM

Discovered in February 2014

All OS X and iOS software vulnerable to man-
in-the-middle attacks
◦ Broken TLS implementation provides no protection

against the very attack it was supposed to prevent

What does this tell you about quality control for
security-critical software?

HTTPS: HTTP over SSL/TLS

HTTPS and Its Adversary Model

HTTPS: end-to-end secure protocol for Web

Goals: confidentiality, authentication (usually for server only), and integrity against
network attackers, including man-in-the-middle (MITM) attacks

browser HTTPS serverInternetproxy

HTTPS tunnel

The Lock Icon

Goal: identify secure connection
• SSL/TLS is being used between client and server to protect against active network attacker

Lock icon should only be shown when the page is secure against
network attacker

• Semantics subtle and not widely understood by users
• Problem in user interface design

HTTPS Security Guarantees

The origin of the page is what it says in the address bar

Contents of the page have not been viewed or modified
by a network attacker

User must interpret what he sees

HTTP ® HTTPS and Back

Common pattern: HTTPS upgrade
◦ Come to site over HTTP, redirect to HTTPS for login

◦ Browse site over HTTP, redirect to HTTPS for checkout

sslstrip: man-in-the-middle network attacker downgrades connection

attacker

SSLHTTP

Can the server
detect this attack?

Rewrite to
Redirect Location: https://... to Location: http://...
Rewrite <form action=https://… > to <form action=http://…>

Þ

Clever favicon inserted
by network attacker

Will You Notice?

Source: Moxie Marlinspike

Browsers no longer put favicons into the address bar

Enc
ryp

t a
ll

the
 th

ing
s!

HTT
PS

EVE
RYW

HER
E!!

!

Since 2018, Chrome marks
all HTTP sites as insecure

HSTS: Strict Transport Security

Header tells browser to always connect over HTTPS
• Subsequent visits must be over HTTPS
• Browser refuses to connect over HTTP or if site presents an invalid or self-signed cert

Requires that entire site be served over valid HTTPS
HSTS flag deleted when user “clears private data”: security vs. privacy

Strict-Transport-Security: max-age=63072000; includeSubDomains

(ignored if not over HTTPS)

Preloaded HSTS List
https://hstspreload.org/

Strict-Transport-Security: max-age=63072000; includeSubDomains; preload

Preload list hard-coded in Chrome source code.
Examples: Google, Paypal, Twitter, Simple, Linode, Stripe, Lastpass, …

Using CSP to Upgrade to HTTPS

Problem: many pages use

Makes it difficult to migrate a section of a site to HTTPS

Solution: gradual transition using CSP

Content-Security-Policy: upgrade-insecure-requests

Dealing with Virtual Hosts

C

versions, suites, Ns,
certificate for PKs,
“ServerHelloDone”

C, versionc, suitesc, Nc server_name = foo.com

SNI (Server Name Indication)

Encrypted in TLS 1.3

How to hide which server is
accessed from eavesdroppers?

Solution: encrypt the entire ClientHello message
… with what key?
Include public key in the server’s DNS record

Authenticating the Server

Whose public key is used to
establish the secure session?

Public-Key Certificates

C

versions, suites, Ns,
certificate for PKs,
“ServerHelloDone”

S

C, versionc, suitesc, Nc

Signed statement saying
that PK is S’s public key

Signed by whom?
How does client verify the signature?
What prevents an attacker from forging it?

Certificate Authorities

A public-key certificate is a signed statement specifying the key and identity
◦ Could be signed by the subject itself (“self-signed”), but why would anyone trust such a

certificate?

Instead: certificate authorities (CAs)
◦ Agencies responsible for certifying public keys
◦ Browsers are pre-configured with the public keys of 100+ of trusted CAs

◦ A public key for any website in the world will be accepted by the browser
if the certificate is signed by one of these CAs

CAs hold “skeleton keys” to the entire Internet

Trusted Certificate Authorities

Example of a Certificate

The Meaning of Color

What is the difference?

Domain Validation (DV) certificate
vs.
Extended Validation (EV) certificate

Means what?

Source: Schulze

EV certificate request must be approved by a human at the certificate authority

Helps block “semantic attacks”:
Remember www.bankofthevvest.com?

UI ineffective, removed from Chrome in 2019

Extended Validation (EV) Certificates

Questions
About EV

Certificates

What does EV certificate mean?

What is the difference between an HTTPS connection
that uses a regular certificate and an HTTPS connection
that uses an EV certificate?

If an attacker has somehow obtained a non-EV
certificate for bank.com, can he inject a script into
https://bank.com content?
◦ What is the origin of the script? Can it access or modify

content that arrived from actual bank.com via HTTPS?

What would the browser show – blue or green?

Certificate Issuance
Free CA!

CA gives a challenge to the requester

By putting a signed challenge on the website,
requester proves that he controls the website
and knows the signing key (why?)

How does this work with
wildcard certificates like
*.cornell.edu?

CA Hierarchy

Browsers, operating systems, etc. have trusted
root certificate authorities
◦ Chrome includes certificates of ~200 trusted root CAs

Root CA signs certificates for intermediate CAs,
they sign certificates for lower-level CAs, etc.
◦ “Chain of trust”: sigVerisign(“Cornell”, PKCornell),

sigCornell(“Vitaly S.”, PKVitaly)

CAs are responsible for verifying the identities of
certificate requestors, domain ownership

Certificate Hierarchy

What power do they have?

Who trusts their certificates?

How Many?

A public key for any website in the world
will be accepted by the browser if the
certificate is signed by one of these CAs

“1,800 entities that are able to issue certificates
vouching for the identity of any website”

Durumeric et al. Analysis of the HTTPS Certificate Ecosystem (2013)

Another Example of a Certificate

Root
Certificates
in Lenovo
Laptops
(2015)

What Could You Do …

… if you had a certificate for cornell.edu
signed by a root CA?

Man-in-the-Middle (MITM) Attack

Read all traffic, undetected

Impersonate any website, undetected

browser

root CA

Flame

Cyber-espionage virus (2010-2012)

Signed with a fake intermediate CA
certificate accepted by any Windows
Update service
◦ Fake certificate was created using an MD5

chosen-prefix collision against an obscure
Microsoft Terminal Server Licensing Service
certificate that was enabled for code signing

MD5 collision technique possibly pre-dates
academic publication of MD5 collisions
◦ Evidence of state-level cryptanalysis?

Comodo is one of the trusted root CAs
◦ Its certificates for any website in the world are accepted by every browser

Comodo accepts certificate orders submitted through resellers
◦ Reseller uses a program to authenticate to Comodo and submit an order

with a domain name and public key, Comodo automatically issues a
certificate for this site

Comodo
Break-In

An Iranian hacker broke into instantSSL.it
and globalTrust.it resellers, decompiled their
certificate issuance program, learned the
credentials of their reseller account and how
to use Comodo API
◦ username: gtadmin, password: globaltrust

Wrote his own program for submitting
orders and obtaining Comodo certificates

On March 15, 2011, got Comodo to issue 9
rogue certificates for popular sites
◦ mail.google.com, login.live.com,

login.yahoo.com, login.skype.com,
addons.mozilla.org, “global trustee”

What are potential
consequences?

I'm single hacker with experience of 1000 hacker, I'm single programmer with
experience of 1000 programmer, I'm single planner/project manager with
experience of 1000 project managers …

When USA and Isarel could read my emails in Yahoo, Hotmail, Skype, Gmail, etc.
without any simple little problem, when they can spy using Echelon, I can do
anything I can. It's a simple rule. You do, I do, that's all. You stop, I stop.
It's rule #1 …

Rule#2: So why all the world got worried, internet shocked and all writers write
about it, but nobody writes about Stuxnet anymore?... So nobody should write
about SSL certificates.

Rule#3: I won't let anyone inside Iran, harm people of Iran, harm my country's
Nuclear Scientists, harm my Leader (which nobody can), harm my President, as I
live, you won't be able to do so. as I live, you don't have privacy in internet,
you don't have security in digital world, just wait and see...

Message from the Attacker

http://pastebin.com/74KXCaEZ

DigiNotar Break-In

In June 2011, “ComodoHacker” broke into a
Dutch certificate authority, DigiNotar

Security of DigiNotar servers:
◦ All core certificate servers in a single Windows domain,

controlled by a single admin password (Pr0d@dm1n)

◦ Software on public-facing servers out of date, unpatched

◦ Tools used in the attack would have been easily detected
by an antivirus… if it had been present

Message found in scripts used to generate fake
certificates: “THERE IS NO ANY HARDWARE
OR SOFTWARE IN THIS WORLD EXISTS
WHICH COULD STOP MY HEAVY ATTACKS
MY BRAIN OR MY SKILLS OR MY WILL
OR MY EXPERTISE"

Consequences
of the

DigiNotar
Hack

Break-in not detected for a month

Rogue certificates issued for *.google.com,
Skype, Facebook, www.cia.gov, and 527
other domains

99% of revocation lookups for these
certificates originated from Iran
◦ Evidence that rogue certificates were being

used, most likely by Iranian government or
Iranian ISPs to intercept encrypted
communications
◦ 300,000 users were served rogue certificates

(95% in Iran)

Textbook
“man in the
middle”

Most sophisticated hack of all time … I’m really sharp, powerful, dangerous and
smart!

My country should have control over Google, Skype, Yahoo, etc. […] I’m breaking
all encryption algorithms and giving power to my country to control all of them.

You only heards Comodo (successfully issued 9 certs for me -thanks by the way-),
DigiNotar (successfully generated 500+ code signing and SSL certs for me -thanks
again-), StartCOM (got connection to HSM, was generating for twitter, google,
etc. CEO was lucky enough, but I have ALL emails, database backups, customer
data which I'll publish all via cryptome in near future), GlobalSign (I have
access to their entire server, got DB backups, their linux / tar gzipped and
downloaded, I even have private key of their OWN globalsign.com domain,
hahahaa).... BUT YOU HAVE TO HEAR SO MUCH MORE! SO MUCH MORE! At least 3 more,
AT LEAST

Another Message from the Attacker

http://pastebin.com/u/ComodoHacker

Rogue Certificates in the Wild

In Jan 2013, TurkTrust (a root CA) accidentally issued intermediate CA
certificates to customers who requested regular certificates

Ankara transit authority used its certificate to issue a fake *.google.com
certificate in order to intercept and filter SSL traffic from its network

These guys gained the ability to
intercept HTTPS traffic to any
website in the world

More rogue certs (2015)
• MCS Holdings (Egypt) for

Google domains
• Root CA: CNNIC (China)

• WoSign (Chinese CA) for
Github and Alibaba

Rogue Certs for Surveillance

https://www.businessinsider.com/apple-google-mozilla-block-kazakhstan-governments-browser-spying-tool-2019-8

In Feb 2012, TrustWave admitted issuing an intermediate
CA certificate to a corporate customer
◦ Purpose: “re-sign” certificates for “data loss prevention”

◦ Translation: forge certificates of third-party sites in order to spy on
employees’ encrypted communications with the outside world

Customer can now forge certificates for any site in world…
and they will be accepted by any browser!
◦ What if a “re-signed” certificate leaks out?

Defunct Israeli startup

Installed its own root certificate
◦ Goal: re-sign SSL certificates, proxy/MITM connections

◦ From their former website: “Our advanced SSL hijacker SDK is a brand new technology that
allows you to access data that was encrypted using SSL and perform on the fly SSL decryption.”

Same private key on all machines, easily extracted
◦ Anyone could issue fake Komodia certificates, MITM any machine with Komodia

Also turned self-signed certificates into trusted certificates

Software behind the
Superfish / Lenovo scandal

Credit: Adrienne Porter Felt (Google)

Former CIO of a
business unit dumped
$1 million in stock,
later charged with
insider trading

CVE-2017-5638
vulnerability in Apache
Struts, an open-source
framework for enterprise
Java applications

If code is included in the
Content-Type header of
an HTTP request, file
upload parser tricked into
executing this code

Timeline of the Equifax Hack

◦ Early March, 2017: Struts vulnerability discovered

◦ March 7: Apache released a patch

◦ March 9: Equifax IT told to apply the patch to all affected systems… they didn’t

◦ March 10: Equifax Web portal breached via the Struts vulnerability

◦ March 15: Equifax IT ran a series of scans to identify unpatched systems… the scan did not
identify any of vulnerable, unpatched systems

…

◦ May 13: Attackers start moving from compromised server into other parts of the network
and exfiltrating data

https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html

Detecting Data Exfiltration

Attackers were encrypting the data they were
stealing from Equifax

Like many enterprises, Equifax decrypts, inspects,
and re-encrypts all internal network traffic

The SSL certificate needed for re-encryption expired 10
months prior… exfiltration was discovered only on July
29, 2017, when the certificate was renewed

Image: Riverbed

Malware installs its own certificate

Modifies pseudo-random generator to add encrypted hardware
and software identifiers of the infected machine to the random
nonce sent as part of the TLS handshake

https://securelist.com/compfun-successor-reductor/93633/

Revoking
Certificates

Short expirations

CRLs (certificate revocation lists)

OCSP (online certificate status protocol)
◦ Client queries CA to check validity of cert
◦ Privacy concerns, performance / scalability issues

◦ Stapling: website periodically gets fresh, time-
stamped OCSP signature from CA, includes it with
the certificate
◦ Certs can have “must staple” extension

In the Netherlands, interior minister went on TV to warn Dutch
citizens to immediately stop using secure government websites

https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html

Revoking DigiNotar Certificates

https://www.thesslstore.com/blog/mass-revocation-millions-of-certificates-revoked-by-apple-google-godaddy/

https://www.zdnet.com/article/lets-encrypt-to-revoke-3-million-certificates-on-march-4-due-to-bug/

Domain owners use CAA field to restrict which CAs can issue their certs

Certificate / Public Key Pinning

Idea: client knows what cert/PK to expect, rejects anything else

How?
◦ Pre-install some keys

◦ HPKP (HTTP Public Key Pinning): site can use an HTTP header to let
clients know the hash of public key the site will use

Public-Key-Pins:
pin-sha256="d6qzRu9zOECb90Uez27xWltNsj0e1Md7GkYYkVoZWmM=";
pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ=";
max-age=259200

Note: Chrome never accepted fake DigitNotar certs

What if the site is hacked?

Attacker pins his own key!

Certificate Transparency

Force CAs to log the certificates they sign in a public tamper-
evident register
◦ Server attaches a signed statement from log (SCT) to certificate
◦ Browser will only use a cert if it is published on two log servers

◦ Companies can scan logs to look for invalid issuance

Google has been pushing this (+ has its own CA)
◦ Chrome requires it for EV certs + certs with path to root CA

If certificate is not logged, will users pay attention to browser warnings?

How does this compare to OCSP?

Peeking
Through
SSL/TLS

Network traffic reveals length of
HTTPS packets
◦ TLS supports up to 256 bytes of padding

AJAX-rich pages have lots and lots
of interactions with the server

These interactions expose specific
internal state of the page

Traffic Analysis: Online Tax Software

Chen et al. “Side-Channel Leaks in Web Applications: a Reality Today, a Challenge Tomorrow”

Sizes of webpages identify
the state of the application,
which leaks information
about the user’s inputs

Traffic Analysis: Video Streaming

Schuster et al. “Beauty and the Burst: Remote Identification of Encrypted Video Streams”

Patterns of traffic bursts in
encrypted video streams
due to variable-bitrate
encoding identify specific
YouTube and Netflix videos

