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Warm Up: 802.11b

NAV (Network Allocation Vector)
◦ 15-bit field, max value: 32767

◦ Any node can reserve channel for NAV microseconds
◦ No one else should transmit during NAV period

… but not followed by most 802.11b cards

De-authentication
◦ Any node can send deauth packet to AP
◦ Deauth packet unauthenticated

… attacker can repeatedly deauth anyone



ISP1 ISP2 

Back
bone 

ISP3 example.com

1. DNS lookup on example.com to get IP address (1.2.3.4)
2. TCP connection setup via 4-way handshake of IP packets to and from 1.2.3.4 
3. Send HTTP request over TCP connection

ISP1 DNS server

1.2.3.4

Steps to Send an HTTP Request
Pre HTTP/3



ISP1 ISP2 

Back
bone 

ISP3 example.com

ISP1 DNS server

1.2.3.4

Network Threat Models

Malicious hosts
(off-path)

Subverted 
routers or links
(on-path)

Malicious ISPs
(on or off-path)



local network

Internet service
provider (ISP)

backbone

ISP local network

◦ TCP/IP for packet routing and connections

◦ Border Gateway Protocol (BGP) for route discovery

◦ Domain Name System (DNS) for IP address discovery

Autonomous system (AS) is a collection 
of IP networks under control of a single 
administrator (e.g., ISP)

Internet Is a Network of Networks



Internet Protocol Stack

Application
Transport
Network
Link

Application
Transport
Network
Link

Network
Link

HTTP, DNS, SMTP, SSH, etc.

TCP, UDP

IP, ICMP

802x (Ethernet, 802.11)



How does a packet reach final destination?

How does information
get to next hop?

IP: “The Narrow Waist”

How to set up a communication 
stream or channel?

How does application 
structure data?



Data Formats

Application data

dataTCP
header dataTCP

header dataTCP
header

dataTCP
header

IP
header

dataTCP
header

IP
header

Ethernet
header

Ethernet
trailer

application
layer

transport
layer

network
layer

data link
layer

message

segment

packet

frame



Connectionless
◦ Unreliable, “best-effort” protocol: no ordering, no retransmission, no error checking, no acknowledgement

Uses numeric addresses for routing
◦ Typically, several hops in the route

Alice’s computer

Alice’s ISP

Bob’s ISP

Bob’s computer

Packet
Source 128.83.130.239

171.64.66.201

3

Dest

Seq
128.83.130.239 171.64.66.201

IP (Internet Protocol)



IP Is Not Enough for Packet Delivery

Given an IP packet, how does the router 
know where to send it next?

On a local network, what MAC address 
corresponds to a given IP address?

BGP

ARP



Global IPv4 Addresses

Globally unique

Hierarchical: network + host

Dot notation
◦ 10.3.2.4
◦ 128.96.33.81

◦ 192.12.69.77

Prefix of IP address identifies 
the network it belongs to

Class A network: owns all addresses with a given top byte
Class B network: … top 2 bytes
Class C network: … top 3 bytes



Subnet Definition

IP address
◦ Subnet part: high-order bits
◦Host part: low-order bits 

What’s a subnet ?
◦Device interfaces with the same 
subnet part of IP address
◦Can physically reach each other 
without an intervening router

223.1.1.1

223.1.1.3

223.1.1.4 223.1.2.9

223.1.3.2223.1.3.1

subnet

223.1.1.2

223.1.3.27
223.1.2.2

223.1.2.1



Forwarding Algorithm
D = destination IP address
for each entry <SubnetNum, SubnetMask, NextHop>

D1 = SubnetMask & D
if D1 = SubnetNum

if NextHop is an interface
deliver datagram directly to destination

else
deliver datagram to NextHop (a router)

Subnetting Example



CIDR: Classless Inter-Domain Level Routing

CIDR balances two objectives: (1) minimize the number of routes 
that a router needs to know, and (2) hand out addresses efficiently

CIDR uses aggregate routes
◦ A single entry in the forwarding table tells the router how to reach a 

lot of different networks
◦ No rigid boundaries between address classes
◦ Variable number of bits per aggregated ranges of addresses



Classless Addressing

Network number may be of any length

Represent network number with a 
single <length, value> pair

Advertise 128.112.128/21



Classless Address Block Management

AS with 16 class-C networks: instead of handing out 16 class-C addresses at 
random, hand out a block of class-C addresses that share a common prefix
◦ E.g., class-C network numbers from 192.4.16 through 192.4.31, so the top 20 bits of all 

addresses in this range are the same (11000000 00000100 0001)
◦ This implicitly creates a 20-bit network number

Prefix convention: /X after prefix, where X is prefix length in bits
◦ 20-bit prefix for 192.4.16 through 192.4.31: 192.4.16/20
◦ A single class-C network number, 24 bits long: 192.4.16/24



IP Forwarding w/ 
Longest Match

Router tables may have prefixes that overlap

• Some addresses may match more than one prefix
• Both 171.69 (a 16-bit prefix) and 171.69.10 (a 24-bit 

prefix) in the forwarding table of a single router
• Packet destined to 171.69.10.5 matches both prefixes

Matching is based on the principle of 
“longest match”

• 171.69.10 in the above case

A packet destined to 171.69.20.5 would match 
to 171.69 and not 171.69.10 



Longest Prefix Matching

Destination Address Range

11001000 00010111 00010*** *********

11001000 00010111 00011000 *********

11001000 00010111 00011*** *********

otherwise

DA: 11001000  00010111  00011000  10101010

DA: 11001000  00010111  00010110  10100001 which interface?
which interface?

When looking for forwarding table entry for given 
destination address, use longest (ie, most specific) 
address prefix that matches destination address

Link interface

0

1

2

3



Transport Protocols

Goal: provide logical end-to-end 
communication channel between app 
processes running on different hosts
◦ Examples: TCP and UDP

application
transport
network
data link
physical

logical end-end transport
application
transport
network
data link
physical



Sender: break data into packets, attach sequence number to every packet

Receiver: reassemble packets in correct order
◦ Acknowledge receipt; lost packets are re-sent

Connection state maintained on both sides

book
remember received pages

and reassemblemail each
page

TCP (Transmission Control Protocol)



User Datagram 
Protocol (UDP)

UDP is a connectionless protocol

• Simply send datagram to application process at 
the specified port of the IP address

• Source port number provides return address
• Applications: media streaming, broadcast

No acknowledgement, no flow 
control, no message continuation



ICMP (Control Message Protocol)

Provides feedback about network operation
◦ “Out-of-band” messages carried in IP packets

Error reporting, congestion control, reachability… 
◦ Destination unreachable
◦ Time exceeded
◦ Parameter problem

◦ Redirect to better gateway
◦ Reachability test (echo / echo reply)

◦ Message transit delay (timestamp request / reply)



The Internet Was Designed in the 1970s…

All transmissions are in the clear
◦ Eavesdropping

Nothing is authenticated or integrity-protected
◦ Spoofing, packet injection, etc.

Anyone can freely talk to anyone
◦ Denial of service

Image: Forbes



network

Packet Sniffing

Network interface card (NIC) in “promiscuous mode” reads all passing data

Many applications send data unencrypted



Wireshark: free, 
open-source 
protocol analyzer



TCP/IP Implementation Bugs

“Ping of Death”
◦ Old versions of Windows would crash if ICMP packet has 

payload longer than 64K (illegal per protocol RFC)

“Teardrop” and “Bonk”
◦ Bad implementations of TCP/IP crash if Offset fields in TCP 

fragments are set to large or overlapping values

“Land”
◦ IP packet with source address, port equal to destination 

address, port and SYN flag set triggers loopback in the 
Windows XP SP2 implementation of TCP/IP stack, locks up CPU

Solution: use up-to-date TCP/IP 
implementation, ingress filtering

Common cause:
implementors assume 
that input will follow 
specification … but 
attackers can and will 
send malformed inputs



Version Header Length
Type of Service

Total Length
Identification

Flags

Time to Live
Protocol

Header Checksum

Source Address of Originating Host

Destination Address of Target Host

Options

Padding

IP Data

Fragment Offset

0 31

Source Port Dest port

SEQ Number

ACK Number

Other stuff

U
R
G

P
S
R

A
C
K

P
S
H

S
Y
N

F
I
N

0 31

IP header

TCP header



TCP Handshake
C S

SYNC

SYNS, ACKS

ACKC

Listening…

Spawn thread,
store data
(connection state, etc.)

Wait

Connected

sequence number

sequence number + 1



SYN Flooding Attack
S

SYNspoofed source addr 1 Listening…
Spawn a new thread,
store connection data

SYNspoofed source addr 2

SYNspoofed source addr 3

SYNspoofed source addr 4

SYNspoofed source addr 5

… and more

… and more

… and more

… and more

… and more
MS Blaster (August 16, 2003):
every infected machine sent 50 
packets per second to port 80 
on windowsupdate.com

IP does not verify or 
authenticate source 
address of packets



Low-Rate SYN Floods

OS Backlog  queue size

Linux 1.2.x 10
FreeBSD 2.1.5 128
WinNT 4.0 6

Backlog timeout: 3 minutes

Attacker need only send 128 SYN packets every 3 minutes

Phrack 48, no 13, 1996



SYN Flooding 
Explained

Attacker sends many connection requests with 
spoofed source addresses

Victim allocates resources for each request
◦ New thread, connection state maintained until timeout
◦ Fixed bound on half-open connections

Once resources exhausted, requests from 
legitimate clients are denied

This is a classic denial of service pattern: it costs 
nothing to TCP initiator to send a connection 
request, but TCP responder must spawn a thread 
for each request - asymmetry!



Preventing 
SYN Floods

DoS is caused by asymmetric state allocation
◦ If responder opens new state for each connection 

attempt, attacker can initiate thousands of 
connections from bogus or spoofed IP addresses

Cookies ensure that the responder is stateless 
until initiator produced at least two messages
◦ Responder’s state (IP addresses and ports of the 

connection) is stored in a cookie and sent to initiator

◦ After initiator responds, cookie is regenerated and 
compared with the cookie returned by the initiator



SYN Cookies
C S

SYNC Listening…

Does not store state

F(source addr, source port, 
dest addr, dest port,
coarse time, server secret)

SYNS, ACKS
sequence # = cookie

Cookie must be unforgeable 
and tamper-proofF=crypto hash

Recompute cookie, 
compare with with the received 
cookie, establish connection only 
if they match 

ACKC
sequence # = cookie +1

Compatible with standard TCP;
simply a “weird” sequence number

http://cr.yp.to/syncookies.html

The only way for initiator to 
produce the valid sequence 
number in ACK is to receive the 
SYN-ACK at the same IP address

Proof that IP 
address is 
not spoofed



Anti-Spoofing 
Cookies: 

Basic Pattern

Client sends request (message #1) to server

Typical protocol:
◦ Server sets up connection, responds with message #2
◦ Client may complete session or not - potential DoS!

Cookie version:
◦ Server responds with hashed connection data instead 

of message #2
◦ Client confirms by returning hashed data
◦ Need an extra step to send postponed message #2, 

except in TCP (can piggyback on SYN-ACK in TCP)

If source IP address is spoofed, 
attacker can’t confirm



Another Defense: Random Deletion

If SYN queue is full, delete random entry
◦ Legitimate connections have a chance to complete

◦ Fake addresses will be eventually deleted

Easy to implement

121.17.182.45

231.202.1.16

121.100.20.14

5.17.95.155

SYNC
half-open connections



Prolexic, Google Project Shield, etc.
Idea: only forward established TCP connections to site

Prolexic
proxy

Web 
site

Lots-of-SYNs

Lots-of-SYN/ACKs

Few ACKs Forward
to site

Prolexic purchased by Akamai in 2014
Many companies:  Cloudflare, Imperva, Arbor Networks, …



Attack Packet Victim Response Rate: attk/day
[ATLAS 2013]

TCP SYN to open port TCP SYN/ACK 773

TCP SYN to closed port TCP RST

TCP ACK or TCP DATA TCP RST

TCP RST No response

TCP NULL TCP RST

ICMP ECHO Request ICMP ECHO Response 50

UDP to closed port ICMP Port unreachable 387

Other Junk-Packet Attacks
Proxy must keep floods of these away from website



Ingress Filtering

ISP1 ISP2 

1.2.3.4

5.6.7.8Backbone 

Attacker’s goal: prevent legitimate users from accessing victim (1.2.3.4) 

ICMP ping flood
- Attacker sends ICMP pings as fast as possible to victim
- When will this work as a DoS? 
- How can this be prevented?  Ingress filtering of attacker IP addresses 

near victim once attack identified

Attacker resources > victim’s



ISP1 ISP2 

1.2.3.4

5.6.7.8
Backbone 

ISP3 

8.7.3.4

BSD 4.4 used predictable initial sequence numbers (ISNs)
• At system initialization, set ISN to 1
• Increment ISN by 64,000 every half-second

What can a clever attacker do?
(assume spoofing possible)

Predictable Sequence Numbers



TCP Spoofing

Each TCP connection has associated state
◦ Sequence number, port number

TCP state is easy to guess
◦ Port numbers standard, seq numbers predictable

Can inject packets into existing connections
◦ If attacker knows the initial sequence number and 

amount of traffic, can guess likely current number
◦ Guessing a 32-bit seq number is not practical, but 

most systems accept large windows of sequence 
numbers (to handle packet losses), so send a flood 
of packets with likely sequence numbers



ISP1 ISP2 

1.2.3.4

5.6.7.8
Backbone 

ISP3 

8.7.3.4

src: 8.7.3.4
dst: 1.2.3.4

seq#(8.7.3.4)
FIN

src: 8.7.3.4
dst: 1.2.3.4

seq#(8.7.3.4)
“rsh rm –rf /”

Forge a FIN packet from 
8.7.3.4 to 1.2.3.4

Forge some application-layer
packet from 8.7.3.4 to 1.2.3.4

Connection between 
1.2.3.4 and 8.7.3.4

TCP Spoofing and Injection

Attacker can’t see server’s responses, but can bypass IP address-based authentication
(remote shell, SPF defense against spam)

DoS by 
connection reset

Off-path 
attacker



Fix idea 1:
• Random ISN at system startup
• Increment by 64,000 each half second
Better fix:
• Random ISN for every connection
Remains an issue in some cases:
• Any FIN accepted with seq number in receiver window: 217 attempts
• Side-channel attacks to infer seq number

How to Fix Predictable Seq Numbers

SYN cookies ensure this

ISP1 ISP2 

1.2.3.4

5.6.7.8
Backbone 

ISP3 

8.7.3.4



Avoiding Ingress Filtering

ISP1 ISP2 

1.2.3.4

5.6.7.8Backbone 

Ingress filtering

ISP3 

8.7.3.4

1. Attacker can send packet with fake (“spoofed”) source IP 
address. Packet will get routed correctly. Replies will not.

2. Distribute attack across many IP addresses



How to Fix Spoofing

IP traceback: techniques for inferring actual source of a (spoofed) packet
BCP 38 (RFC 2827): upstream ingress filtering to drop spoofed packets
• Ideally, all network traffic providers would perform ingress filtering… but they don’t

ISP1 ISP2 

1.2.3.4

5.6.7.8
Backbone 

ISP3 

8.7.3.4



https://spoofer.caida.org/summary.php



DISTRIBUTED
DENIAL OF SERVICE



TCP Con Flood

Command a bot/zombie army to:
◦ Complete TCP connection to web site
◦ Send short HTTP HEAD request
◦ Repeat

Will bypass SYN flood protection proxy but 
attacker cannot use spoofed source IPs
◦ Reveals location of bot zombies
◦ Proxy can now block or rate-limit bots



Backbone 

DDoS Attack on Estonia

ISP1 ISP2 

1.2.3.4
5.6.7.8

ISP3 

8.7.3.4
8.7.1.3

1.2.4.3

April 27, 2007

Continued for weeks, with varying levels of intensity
Government, banking, news, university websites
Government shut down international Internet connections





Mirai Botnet

Origin: game-booting code from Lizard Squad
◦ Used in attacks on Sony PlayStation and Xbox Live networks

Scans big blocks of Internet address space for open telnet ports, logs 
in using default passwords
◦ Assembled an army of 1 to 2.5 million IoT devices

In 2016, used to stage massive DDoS attacks on DYN’s DNS servers

Knocked out access to 1200 websites, including Twitter, Netflix, 
Paypal, Shopify, GitHub… Much more 

about DNS later

image: vice.com



Mirai Exploits Default Passwords



Amplification

Key element of many powerful DoS attacks

Achieves attacker resources >>> victim’s

◦ 1 request sent by attacker => N requests 
received by the victim

◦ 1 byte sent by attacker => N bytes received by 
the victim (N can be 200+ in some attacks)

◦ Force victim to expend computation, logical 
resources



“Smurf” Reflector Attack

gateway victim

1 ICMP Echo Req
Src: victim’s address
Dest: broadcast address

Looks like a legitimate
“Are you alive?” ping
request from the victim

Every host on the network
generates a ping (ICMP
Echo Reply) to victim

Stream of ping replies
overwhelms victim

Solution: reject external 
packets to broadcast addresses



NTP Reflection + Amplification

December 2013 – February 2014: 
400 Gbps DDoS attacks involving 4,529 NTP servers

DoS
Source

victimNTP
(Network Time Protocol)

server

“Give me the addresses of the
last 600 machines you talked to”
spoofed SrcIP:  victim

(234 bytes)

600 addresses

(49,000 bytes)

x206 amplification

7 million unsecured NTP servers on the Internet  (Arbor)



UDP in Reflection Attacks

DNS, memcached, … application-layer protocols running on UDP are often 
exploited in DoS attacks

Single packet to victim service yields response, so spoofing + reflection works

dataIP 
hdr

16-bit 
source port number

16-bit 
destination port number

16-bit 
UDP checksum

UDP 
hdr

16-bit 
UDP length

length = header len + data len



Memcached DDoS Attacks

Memcached is a popular in-memory data store

Supports UDP requests

Default configuration: accept UDP requests from anywhere

Standard reflector attack
◦ Insert data into the Memcached server
◦ Send UDP requests with source IP addr of victim



DDoS Attack on GitHub (Feb 2018)

◦ 51,000x bandwidth amplification

◦ 1.3 TB/s of traffic to GitHub from 1000+ ASes

◦ GitHub offline for 5 minutes

◦ Response
◦ Use BGP announcement to route GitHub traffic through Akamai
◦ Akamai gives more capacity + helps filter out bogus requests
◦ Turn off UDP support in Memcached (now off by default)

57https://github.blog/2018-03-01-ddos-incident-report/



https://www.akamai.com/blog/security/largest-european-ddos-attack-ever

Victim: an Akamai customer in Eastern Europe

Source: a highly-sophisticated, global botnet 
of compromised devices

75 attacks over 30 days using UDP, UDP 
fragmentation, ICMP flood, RESET flood, SYN 
flood, TCP anomaly, TCP fragment, PSH ACK 
flood, FIN push flood, and PUSH flood.  UDP 
most popular.

Peak rates: 854 Gbps and 660M packets/sec

Same customer attacked again on Sep 22: 
705M packets/sec



https://threatpost.com/yandex-meris-botnet/169368/

Wired (September 11, 2021)

A massive botnet, dubbed Mēris, is believed responsible, flooding Yandex with millions of HTTP 
requests for webpages at the same time.  

This DDoS technique is called HTTP pipelining, where a browser requests a connection to a server and, 
without waiting for a response, sends multiple more requests. Those requests reportedly originated 
from networking gear made by MikroTik. Attackers, according to Qrator Labs, exploited a 2018 bug 
unpatched in more than 56,000 MikroTik hosts involved in the DDoS attack. 

The Mēris botnet delivered the largest attack against Yandex it has ever spotted (by traffic volume) –
peaking at 21.8 million requests per second (RPS).



https://thehackernews.com/2022/09/record-ddos-attack-with-253-billion.html

June 27, 2022

Target: a Chinese telecom company

Method: HTTP/2 multiplexing (multiple packets in one) from a botnet of 170,000 
different routers, security cameras, compromised servers in over 180 countries

Peak rate: 3.9 million requests per second



Other 
Countermeasures

Kerberos
• Provides authentication, protects against application-

layer spoofing
• Does not protect against connection hijacking

Above

Transport

Layer

SSL/TLS and SSH
• Protects against connection hijacking and injected data
• Does not protect against DoS by spoofed packets

Above

Network

Layer

IPsec
• Protects against hijacking, injection, DoS using 

connection resets, IP address spoofing

Above

Network

Layer


