
SECURITY ON
MOBILE DEVICES

VITALY SHMATIKOV



Where Users Spend Time



What’s Valuable on Phones?

◦ Identify location

◦ Record phone calls

◦ Log SMS (remember 2FA SMS?)

◦ Send premium SMS messages

◦ Steal contact list, email, messaging, banking/financial information, private photos…

◦ Phishing

◦Malvertising

◦ Join Bots

specific to mobile



Physical Threats

◦ Powered-off devices under complete physical control of an adversary
◦ Including well-resourced nation-states, police, etc.

◦ Screen-locked devices under physical control of an adversary (e.g. thieves)

◦ Unlocked devices under control of different user (e.g. intimate partner abuse)

◦ Devices in physical proximity to an adversary who control radio channels, 
including cellular, WiFi, Bluetooth, GPS, NFC



Untrusted Code

Mobile OSes intentionally allow (with explicit user consent) installation 
of application code from arbitrary sources that can…

◦ Abuse APIs supported by the OS with malicious intent, e.g. spyware

◦ Exploit bugs in the OS

◦Mimic system or other app user interfaces to confuse users

◦ Read content from system or other application user interfaces (e.g., 
screen-scrape)

◦ Inject input events into system or other app user interfaces



Mobile Exploits Very Valuable



Emergency Apple update 
on September 13, 2021

The flaw in iMessage was exploited by the Pegasus spyware from 
Israeli firm NSO group to gain full access to victims’ devices.

The exploit broke through new iPhone defenses that Apple had 
baked into iOS 14, dubbed BlastDoor, which were supposed to 
prevent silent attacks by filtering potentially malicious code. 

https://techcrunch.com/2021/09/13/apple-zero-day-nso-pegasus/

Based on an integer overflow vulnerability in CoreGraphics image rendering library.

NSO is infamous for 
developing, 
weaponizing, and 
deploying zero-click 
exploits against 
messaging apps



Unlocking Device

PINs, 
patterns,
alphanumeric passwords
…



Swipe Code Problems



iPhone 
Password 
Hashing

Goal: password hashing where a 4-8 digit 
PIN takes a very long time to crack, even if 
the device is physically compromised 

Phone-specific aspects:

◦ Lots of computation uses up battery 

◦Physical access allows copying secret off 
the device and cracking remotely 



Secure Enclave
Additional secure processor inside every 
iPhone 
◦ Memory inaccessible to normal OS
◦ Utilizes a secure boot process that 

ensures its software is signed

◦ AES key burned in at manufacture

Secure enclave has instructions that allow 
encrypting and decrypting content using 
the key, but the key itself is never 
accessible (incl. via JTAG)



iPhone Unlocking

User passcode is entangled with the 
AES key fused into secure enclave 
(known as UID)

The key to decrypt the device can 
only be derived on the single 
secure enclave on a specific phone 
-- not possible to take offline and 
brute force

The passcode is entangled with the device’s UID many 
times: EncryptUID(EncryptUID(EncryptUID(passcode)…))

Approx. 80ms per password check
5 failed attempts ⇒ 1 min delay
9 failures ⇒ 1 hour delay
10 failed attempts ⇒ erase phone

enforced by firmware 
on the secure enclave 
itself — cannot be 
changed by iOS



FaceID / TouchID

By default (no FaceID, TouchID), class encryption keys are erased from memory 
of secure enclave whenever the device is locked or powered off

When TouchID/FaceID is enabled, class keys are kept and hardware sensor sends 
fingerprint image to secure enclave. All ML/analysis is performed within the 
secure enclave.

Application files written to flash memory 
are encrypted through a hierarchy of keys: 
- Per-file key: encrypts all file contents (AES-XTS)
- Class key: encrypts per-file key (ciphertext stored in metadata)
- File-system key: encrypts file metadata



Apple-FBI Dispute

2016: FBI attempted to compel Apple to 
unlock San Bernardino killer’s phone



Technical Details of the Apple-FBI Dispute

The court order wanted a custom version of the secure enclave firmware that would…

1."it will bypass or disable the auto-erase function whether or not it has been enabled"

2."it will enable the FBI to submit passcodes to the SUBJECT DEVICE for testing electronically 
via the physical device port, Bluetooth, Wi-Fi, or other protocol"

3."it will ensure that when the FBI submits passcodes to the SUBJECT DEVICE, software 
running on the device will not purposefully introduce any additional delay between passcode 
attempts beyond what is incurred by Apple hardware”

this user-configurable feature of iOS 8 automatically deletes keys 
needed to read encrypted data after ten consecutive incorrect attempts



How FBI Got Access?

Paid $900,000 to Azimuth Security for an exploit
◦ Based on a vulnerability in open-source code from Mozilla that iOS used to let 

accessories to be plugged into the lightning port + several other exploits

One of the exploit authors founded Corellium
◦ ARM virtualization
◦ Lets researchers test “virtual” iOS and Android phones on a server, look for bugs, etc.

Apple tried to acquire Corellium, then sued them for copyright infringement and 
unlawful bypass of Apple’s security measures, settled in 2021



Secure boot chain

◦When an iOS device is turned on, it executes code from read-only memory 
known as Boot ROM. This immutable code, known as the hardware root of 
trust, is laid down during chip fabrication, and is implicitly trusted.

◦ The Boot ROM code contains the Apple Root CA public key, which is used 
to verify that the bootloader is signed by Apple. This is the first step in the 
chain of trust where each step ensures that the next is signed by Apple.

Why Couldn’t FBI Upload Their Own Firmware?



Secure Software Updates

To prevent devices from being downgraded to older versions that 
lack the security updates, iOS uses System Software Authorization

Device connects to Apple with cryptographic descriptors of each 
component update (e.g., boot loader, kernel, and OS image), 
current versions, a random nonce, and device-specific Exclusive 
Chip ID (ECID)

Apple signs device-personalized message allowing update, which 
boot loader verifies, both for main processor and secure enclave



Android Isolation

Based on SE Linux (Linux with sandboxes)

Applications run as separate user IDs, in 
separate processes
◦ Attacks compromise the application, but not 

the entire system

To escape sandbox, must compromise 
Linux kernel



Structure of Android Applications

Image source: https://medium.com/@Abderraouf/understand-android-basics-part-1-application-activity-and-lifecycle-b559bb1e40e

User interface

Background 
processing Data storage

Messages from 
other apps

Intents are primary 
messaging mechanism 
for interaction between 
components



Android Security Model

Based on permission labels assigned to applications and components

Android middleware mediates inter-component communication 

Access permitted if labels 
assigned to the invoked 
component are in the 
collection of invoking 
component



Mandatory Access Control

◦ Permission labels are set (via manifest) when app is 
installed and cannot be changed 

◦ Permission labels only restrict access to components, 
they do not control information flow 

◦ Apps may contain “private” components that should 
never be accessed by another app (example?)

◦ If a public component doesn’t have explicit permissions 
listed, it can be accessed by any app

Means what?



System API Access

◦ System functionality (eg, camera, networking) is accessed 
via Android API, not system components

◦ App must declare the corresponding permission label in its 
manifest + user must approve at the time of app installation

◦ Signature permissions are used to restrict access only to 
certain developers
◦ Example: Only Google apps can directly use telephony API



Permissions: Not Just Android

All mobile OSes, HTML5 apps, browser extensions… 



Explicit Intents

Yelp Map
App

Name: MapActivity

To: MapActivity

Only the specified destination receives this message



Implicit Intents

Yelp

Map
App

Handles Action: VIEW

Implicit Intent
Action: VIEW

Browser
App

Handles Action: VIEW



Security Issues with Implicit Intents



Access Control for Intents

Permission labels on broadcast intents
◦ Prevents unauthorized apps from receiving these intents  – why is this important?

Pending intents: Instead of directly performing an action via intent, create an 
object that can be passed to another app, thus enabling it to execute the action
◦ Invocation involves RPC to the original app

◦ Introduces delegation into Android’s MAC system



Permission Re-Delegation
An application with a permission performs a privileged 
task on behalf of an application without permission

API

Malware Settings
app

TurnOnWifi()

Permission System

turnOnWifi()

API

Permission System

Public service 
for receiving 
UI messages

pressButton(0)

Malware Settings
app

turnOnWifi()

User 
pressed 
button

Felt et al. “Permission Re-Delegation: Attacks and Defenses”  (2011)



Re-Delegation is a Confused Deputy Problem

The “deputy” app may accidentally expose privileged functionality…

… or intentionally expose it, but the attacker invokes it in a surprising context
◦ Example: broadcast receivers in Android

… or intentionally expose it and attempt to reduce the invoker’s authority, but 
do it incorrectly

Remember URL checks on webhooks?
Parent frame origin checks in frame-busting code?


