SECUR
MOBILE

TY ON

DEVIC

VITALY SHMATIKOV

Where Users Spend Time

Growth in Digital Media Time Spent in Minutes (Billions) %JChaz:'og;e1 .
VS. Jun

1,448 1,481

1,199

964

Mobile App

Desktop

481 492

Jun-2013 Jun-2014 Jun-2015 Jun-2016

@ COMSCORE Source: comScore Media Metrix Multi-Platform & Mobile Metrix, U.S. © comoom, inc. Propsietey.

What’s Valuable on Phones?

o |dentify location

o Record phone calls . ;

o Log SMS (rememnber 2FA SMS?) —7 specific to mobile

o Send premium SMS messages

o Steal contact list, email, messaging, banking/financial information, private photos...
o Phishing

o Malvertising

o Join Bots

Physical Threats

o Powered-off devices under complete physical control of an adversary

o Including well-resourced nation-states, police, etc.
o Screen-locked devices under physical control of an adversary (e.qg. thieves)
o Unlocked devices under control of different user (e.g. intimate partner abuse)

o Devices in physical proximity to an adversary who control radio channels,
including cellular, WiFi, Bluetooth, GPS, NFC

Untrusted Code

Mobile OSes intentionally allow (with explicit user consent) installation
of application code from arbitrary sources that can...

o Abuse APIs supported by the OS with malicious intent, e.g. spyware
o Exploit bugs in the OS
o Mimic system or other app user interfaces to confuse users

o Read content from system or other application user interfaces (e.q.,
screen-scrape)

o [nject input events into system or other app user interfaces

Mobile Exploits Very Valuable

ZERODIUM Payouts for Mobiles’

Upto
$2,500,000
FCP: Full Chain with Persistence - i0S
RCE: Remote Code Execution N Android
LPE: Local Privilege Escalation Hm Any OS
Up to SBX: Sandbox Escape or Bypass
$2,000000
WhatsApp
Up to
RCE+LPE
$1500,000 Zero Click
Up to
$1,000,000
Up to
$500,000
Up to Baseband Media Files
$200,000 RCE+LPE RCE+LPE
10S/Androld 10S/Androld
Up to
$100,000 via MitM Disclosure

ayouts are subject to c e or cancellation without notice. All trademarks are the property of their respective owners.
* All pay« ibji hang e ithout All ke th ty of th ti

10S/Androld 105 /Androkt

ios FCP
Zero Click

iMessage
RCE+LPE
Zero Click

SMS/MMS
RCE+LPE

RCE+LPE

108

Safari RCE
w/o SBX

2019/09 © zerodium.com

ZERODIUM Payouts for Desktops/Servers’ =N

Up to
SR W Windows | RCE: Remote Code Execution
B macOS LPE: Local Privilege Escalation
— e 22 i
Any 0OS VME:Virtual Machine Escape
Up to
$500,000
5001 N
Up to MS Outlook
$250,000 RCE
Up to
$200,000
3003
Up to Edge Firefox Word/ Excel
$100,000 RCE+LPE RCE+LPE RCE
win Win
Upto Adobe PDF
$80,000 RCE+SBX
8001 b, | 5007
Up to Antivirus WinZip
$50,000 RCE RCE

Win RCE
Zero Click

Chrome
RCE+LPE

Windows
LPE/SBX

Apple patches an NSO zero- SmersEney Aople uadete
day flaw affecting all devices on September 13, 2027

Citizen Lab says the ForcedEntry exploit affects all
IPhones, iPads, Macs and Watches

The flaw in iMessage was exploited by the Pegasus spyware from C’:'SOliS infamous for
Israeli firm NSO group to gain full access to victims’ devices. Wz;igg;gia’g, o
deploying zero-click
The exploit broke through new iPhone defenses that Apple had [ReEAEEENE

baked into i0S 14, dubbed BlastDoor, which were supposed to messaging apps
prevent silent attacks by filtering potentially malicious code.

Based on an integer overflow vulnerability in CoreGraphics image rendering library.

https.//techcrunch.com/2021/09/13/apple-zero-day-nso-pegasus/

Unlocking Device

PINs,

patterns,
alphanumeric passwords

Swipe Code Problems

Smudge attacks [Aviv et al., 2010]

Entering pattern leaves smudge that can be
detected with proper lighting

Smudge survives incidental contact with clothing

Another problem: entropy
People choose simple patterns — few strokes
At most 1,600 patterns with <5 strokes

T o ™ 4:02PM

Qo
T-Mobile
=
Y:02.

Tue, Jun 15, 2010

8 Sorry, try again

== Emergency call

Goal: password hashing where a 4-8 digit
PIN takes a very long time to crack, even if
the device is physically compromised

iPhone

Password
Hashing

none-specific aspects:

_ots of computation uses up battery

Physical access allows copying secret off
the device and cracking remotely

Secure Enclave

Additional secure processor inside every
iPhone
o Memory inaccessible to normal OS

o Utilizes a secure boot process that
ensures its software is signed

o AES key burned in at manufacture

Secure enclave has instructions that allow
encrypting and decrypting content using
the key, but the key itself is never

accessible (incl. via JTAG)

i Ph one U N '.OC k| ng The passcode is entangled with the device’s UID many

[’ times: Encryptyp(Encryptup(Encryptyp(passcode)...))

User passcode is entangled with the

Secure Enclave Processor

AES key fused into secure enclave) BN
(known as UID)
Password >
The key to decrypt the device can TR T

8 B Metadata

only be derived on the single Closskey =% Volume Key——> and Cortents
secure enclave on a specific phone

-- not possible to take offline and Aoprox. 80ms per password check | enforced by firmware

brute force 5 failed attempts = 1 min delay on the secure enclave
9 failures = 1 hour delay itself — cannot be
10 failed attempts = erase phone | changed by iOS

FacelD / TouchlD c

File Metadata
Class Key File Contents

P de K m
Application files written to flash memory o
are encrypted through a hierarchy of keys:
- Per-file key: encrypts all file contents (AES-XTS)
- Class key: encrypts per-file key (ciphertext stored in metadata)

- File-system key: encrypts file metadata

By default (no FacelD, TouchlD), class encryption keys are erased from memory
of secure enclave whenever the device is locked or powered off

When TouchlD/FacelD is enabled, class keys are kept and hardware sensor sends
fingerprint image to secure enclave. All ML/analysis is performed within the
secure enclave.

@

Apple-FBI Dispute

g~ o ¢ 2P TG T
. 4 -
n"." »

-. - .

A% DISABLE THE AUTO-ERASE |
' . x FUNCTION

‘ |
Bl °076: FBI attempted to compel Apple to
unlock San Bernardino killer’'s phone

BREAKING OVERNIGHT

CBS 2 APPLE VS. FBI

CEO VOWS TO RESIST ORDER TO UNLOCK KILLER'S PHONE

Technical Details of the Apple-FBI Dispute

The court order wanted a custom version of the secure enclave firmware that would...

this user-configurable feature of iOS 8 automatically deletes keys
needed to read encrypted data after ten consecutive incorrect attempts

1."it will bypass or disable the auto-erase function whether or not it has been enabled"

2."it will enable the FBI to submit passcodes to the SUBJECT DEVICE for testing electronically
via the physical device port, Bluetooth, Wi-Fi, or other protocol”

3."it will ensure that when the FBI submits passcodes to the SUBJECT DEVICE, software

running on the device will not purposefully introduce any additional delay between passcode
attempts beyond what is incurred by Apple hardware”

How FBI| Got Access?

Paid $900,000 to Azimuth Security for an exploit
o Based on a vulnerability in open-source code from Mozilla that iOS used to let
accessories to be plugged into the lightning port + several other exploits

One of the exploit authors founded Corellium

> ARM virtualization '!] CORELLIUM

o Lets researchers test “virtual” iOS and Android phones on a server, look for bugs, etc.

Apple tried to acquire Corellium, then sued them for copyright infringement and
unlawful bypass of Apple’s security measures, settled in 2021

Why Couldn’t FBI Upload Their Own Firmware?

Boot verify Low level venﬁ: iBoot verify i0S

ROM 5|gnature boot- Sig. Kernel
loader
Apple Root run if valid (LLB)
public-key
Secure boot chain not updateable signature signature signature

o When an iOS device is turned on, it executes code from read-only memory
known as Boot ROM. This immutable code, known as the hardware root of
trust, is laid down during chip fabrication, and is implicitly trusted.

o The Boot ROM code contains the Apple Root CA public key, which is used
to verify that the bootloader is signed by Apple. This is the first step in the
chain of trust where each step ensures that the next is signed by Apple.

S

ecure Software Updates

To prevent devices from being downgraded to older versions that
lack the security updates, 105 uses System Software Authorization

Device connects to Apple with cryptographic descriptors of each
component update (e.qg., boot loader, kernel, and OS image),
current versions, a random nonce, and device-specific Exclusive

C
A

hip ID (ECID)

ople signs device-personalized message allowing update, which

boot loader verifies, both for main processor and secure enclave

Android Isolation

Based on SE Linux (Linux with sandboxes)

Applications run as separate user IDs, In
separate processes
o Attacks compromise the application, but not
the entire system
To escape sandbox, must compromise
Linux kernel

“““““““““““““““““““““““

Since 5.0: ART (Android runtime)

replaces Dalvik VM to run apps natively

g Bluetooth
S B
b | S —————————

Display

GPS
Receiver

(

Binder j

Cellular
Radio

(

Embedded Linux

)

Structure of Android Applications

App Component

. Messages from i
User interface Activiti N J ImeiEs are primary:
ctivities other apps messaging mechanism
l}n-cﬂvttyropmo 5 0
s sy for interaction between
performs actions on the
. components
Services Con.tent
Aservicals a componant Providers
B k d lﬁz;:;m?nﬁfmd A contert provicer
aC groun operaticrs. mmsw:;::;a
koo Data storage

processing

Image source: https.//medium.comy/@Abderraout/understand-android-basics-part-T-application-activity-and-litecycle-b559bb le40e

Android Security Model

Based on permission labels assigned to applications and components

Android middleware mediates inter-component communication

Application 1 Application 2 Access permitted if labels
- assigned to the invoked
Permission < A: ... : Permission :
labels labels component are in the
T collection of invoking
1,...
Inherit permissions component

Mandatory Access Control

o Permission labels are set (via manifest) when app is
installed and cannot be changed

o Permission labels only restrict access to components,
they do not control information flow €&— Means what?

o Apps may contain “private” components that should
never be accessed by another app (example?)

o |f a public component doesn’t have explicit permissions
listed, it can be accessed by any app

System APl Access

o System functionality (eg, camera, networking) is accessed
via Android API, not system components

o App must declare the corresponding permission label in its
manifest + user must approve at the time of app installation

o Signature permissions are used to restrict access only to
certain developers
o Example: Only Google apps can directly use telephony API

Permissions: Not Just Android

B M & 10:40am

My Tracks FREE

\ My Tracks Team at Google =~ # # # 4

The website “http://merged.ca” would like

This application has access to the Vo)
following: \‘\ to use your current location.

A Your location
e ‘ ' | Request permission only once every 24 hours

Default
A ime»au. R Loy Tarpeep: 16 (Don’t Allow) (Allow)

A Network communication

A Your accounts

i All mobile OSes, HTML5 apps, browser extensions...

[0K l Cancel

Explicit Intents

Name: MapActivity

App

To: MapActivity

Only the specified destination receives this message

Implicit Intents

7\

Yelp |

| .
\\ ”~
/’/ e
& |

Implicit Intent
Action: VIEW

Handles Action: VIEW

7\

Map
App

N

Handles Action: VIEW

7\

Browser
App

N

Security Issues with Implicit Intents

Intent Intent

Figure 1. How an implicit intent is delivered through the system to start
another activity: [1] Activity A creates an Intent with an action description
and passes it to startActivity(). [2] The Android System searches all
apps for an intent filter that matches the intent. When a match is found, [3]
the system starts the matching activity (Activity B) by invoking its

onCreate() method and passing it the Intent.

“Caution: To ensure that your
app is secure, always use an
explicit intent when starting

a Servier. Using an implicit
intent to start a service is a
security hazard because you
can't be certain what service
will respond to the intent, and
the user can't see which
service starts.”

Access Control for Intents

Permission labels on broadcast intents

o Prevents unauthorized apps from receiving these intents — why is this important?

Pending intents: Instead of directly performing an action via intent, create an

object that can be passed to another app, thus enabling it to execute the action
o Invocation involves RPC to the original app

o Introduces delegation into Android’s MAC system r,

Permission Re-Delegation

An application with a permission performs a privileged
task on behalf of an application without permission

ser
pressed

pressButton(0) bUttO
Malware Settings Settings
app app
TurnOnWifi() turnOnWifi() Public service turnOnWifi()

for receiving
@ Ul messages @

Permission System

Permission System

API API

Felt et al. "Permission Re-Delegation. Attacks and Defenses” (2077)

Re-Delegation is a Confused Deputy Problem

The "deputy” app may accidentally expose privileged functionality...

.. or intentionally expose It, but the attacker invokes it in a surprising context

o Example: broadcast receivers in Android

.. or intentionally expose it and attempt to reduce the invoker’s authority, but
do it incorrectly

l\

Remember URL checks on webhooks?
Parent frame origin checks in frame-busting code?

