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Isolation in Modern Systems

◦ Process cannot read memory of another process

◦ User-level code cannot read memory of the OS kernel

◦ JavaScript cannot read memory of the Web browser 
outside its sandbox

◦ Virtual machine cannot read memory of another virtual 
machine

◦ Code outside an SGX enclave cannot read memory 
protected by SGX



Performance in Modern CPUs

Clock speed maxed out
◦ Pentium 4 reached 3.8 GHz in 2004
◦Memory latency is slow and not improving much

To gain performance, need to do more per cycle…

◦Reduce memory delays: caches

◦Work during delays: speculative execution

While waiting to determine the value of a condition, guess which 
branch to take, execute, throw out results if guess is wrong



Caches hold local (fast) copy of recently 
accessed 64-byte chunks of memory

MAIN 
MEMORY

Set Addr Cached Data ~64B
0 F0016280

31C6F4C0
339DD740
614F8480

B5 F5 80 21 E3 2C..
9A DA 59 11 48 F2..
C7 D7 A0 86 67 18..
17 4C 59 B8 58 A7..

1 71685100
132A4880
2A1C0700
C017E9C0

27 BD 5D 2E 84 29..
30 B2 8F 27 05 9C..
9E C3 DA EE B7 D9..
D1 76 16 54 51 5B..

2 311956C0
002D47C0
91507E80
55194040

0A 55 47 82 86 4E..
C4 15 4D 78 B5 C4..
60 D0 2C DD 78 14..
DF 66 E9 D0 11 43..

3 9B27F8C0
8E771100
A001FB40
317178C0

84 A0 7F C7 4E BC..
3B 0B 20 0C DB 58..
29 D9 F5 6A 72 50..
35 82 CB 91 78 8B..

4 6618E980
BA0CDB40
89E92C00
090F9C40

35 11 4A E0 2E F1..
B0 FC 5A 20 D0 7F..
1C 50 A4 F8 EB 6F..
BB 71 ED 16 07 1F..

Addr: 2A1C0700

Data: 9EC3 DA EE B7 D3..

Addr: 132E1340

Address:
132E1340

Data: AC 99 17 8F 44 09..

Addr: 132E1340

Data: AC 99 17 8F 44 09..

Fast

Slow

Fast

hash(addr) 
to map to 
cache set

132E1340 Evict to make roomAC 99 17 8F 44 09..

MEMORY 
CACHE

2A1C0700

Data:
AC 99 17 8F 44 ..

CPU
Sends address,
Receives data

Reads change system state:
• Read to newly-cached location is fast
• Read to evicted location is slow

Memory Caches

Big, slow 
(e.g. 16GB SDRAM)



Virtual Machine

◦ Software abstraction
◦ Behaves like hardware

◦ Encapsulates all OS and application state

◦ Virtualization layer
◦ Extra level of indirection
◦ Decouples hardware, OS

◦ Enforces isolation
◦ Multiplexes physical hardware across VMs



Attacker 
VM

Victim 
VM

Main 
memory

CPU data cache

1) Read in a large array (fill CPU cache with attacker data)
2) Busy loop (allow victim to run)
3) Measure time to read large array  (load measurement)

Locations in cache occupied by 
victim will take longer to load

Information about victim’s use of 
cache revealed to attacker

Cache Contention
Same hardware cache used 
by victim and attacker



Modular Exponentiation (x, e, N):
let en … e1 be the bits of e
y ← 1
for ei in {en …e1}

y ← Square(y)                  (S)
y ← Reduce(y, N)             (R)
if  ei = 1 then 

y ← Multi(y, x)            (M)
y ← Reduce(y, N)       (R)

return y      //    y = xe mod N

If ei = 1, execute “SRMR”
If ei = 0, execute “SR”

Sequence of function calls
reveals secret key

Secret 
keyCross-VM Side Channel

ElGamal encryption algorithm

Secret 4096-bit encryption key



Attacker 
VM

Victim VM

Main 
memory

CPU cache

Runs (S) operation

Attacker 
VM

(each row represents 
cache set)

…

Scheduling
order on 
CPU core

Victim VM

Runs (M) operation

Attacker 
VM

…

• Timings correlated to (distinct) cache 
usage patterns of S, M operations 

• Can spy frequently (every ~16 μs) by 
exploiting scheduling

Interrupt

Interrupt

Prime + Probe



Cross-VM Side 
Channel Probing

Cache Pattern 
Classification

Noise Reduction Code-Path 
Reassembly

Vectors of cache 
measurements

Sequences of SVM-classified 
labels

Fragments of code path

Stage 1 Stage 2

Stage 3 Stage 4

Attack Stages



Prime + Probe Feasibility

◦ Setup for in-lab experimentation:
◦ Intel Yorkfield processor (4 cores, 32KB L1 instruction cache)

◦ Xen + Linux + GnuPG + libgcrypt

◦ Best result:
◦ 300,000,000 prime-probe results (6 hours)
◦ Over 300 key fragments

◦ Brute force the secret key in ~9800 guesses

◦ Not practical in deployment settings
State-of-the-art Prime+Probe attacks:
Sinan Inci et al. 2016 “Cache Attacks 
Enable Bulk Key Recovery on the Cloud”



Attacker 
VM

Victim VM

Main 
memory

S instr

L1 instruction cache

Attacker 
VM

Each row represents 
a cache set

Scheduling 
order on 
CPU core

M instr

Interrupt

Slow

Fast

Runs (S)
operation flush

flush

flush
flush

Fast time on S instr means victim performed S op

Flush + Reload

Yarom and Faulkner (2013)

Yuval Yarom



Attacker 
VM

Victim VM

Main 
memory

S instr

L1 instruction cache

Attacker 
VM

Each row represents 
a cache set

M instr

Interrupt

Slow

Fast

Runs (S)
operation

Flush + Reload

Victim VM

Attacker 
VM

Interrupt

Runs (M)
operation

Scheduling 
order on 
CPU core

Fast time on M instr means victim performed M op



Attacking Square-and-Multiply

Modular Exponentiation (x, e, N):
let en … e1 be the bits of e
y ← 1
for ei in {en …e1}

y ← Square(y)                  (S)
y ← Reduce(y, N)             (R)
if  ei = 1 then 

y ← Multi(y, x)            (M)
y ← Reduce(y, N)       (R)

return y      //    y = xe mod N



Speculative Execution

if  (uncached_value == 1)     // load from memory
a = compute(b)

Branch predictor guesses if() is true based on past history
CPU speculatively executes compute(b) while value is being loaded

Slow

Must wait to execute this code until if() is known

After value arrives from memory…
Guess correct: save speculative work, performance gain (!!)
Incorrect: discard speculative work, ho harm (??) 



Problem: Side Effects

Architectural Guarantee:

Register values eventually match the 
result of in-order execution

Is making, then discarding mistakes 
the same as in-order execution?

The processor executed instructions that were not supposed to run !!

The problem: these instructions can have observable side-effects

Speculative execution:

CPU performs incorrect calculations, 
then deletes mistakes



Spectre and Meltdown

◦ Speculative execution bugs in Intel x86, ARM, IBM processors + 
cache-based side channels (Flush+Reload)

◦ Consequences: break memory protection and isolation in kernels, 
JavaScript sandboxes, hypervisors, other VMs, trusted execution 
enclaves (SGX), etc.



Suppose  unsigned int x comes from an untrusted caller

Execution without speculation is safe:
array2[array1[x]*4096] not evaluated unless x < array1_size

What about with speculative execution?

Conditional Branch Attack (Variant 1)

if (x < array1_size)
y = array2[array1[x]*4096];



Before attack:

• Train branch predictor to expect if() is 
true (e.g. call with x < array1_size)

• Evict array1_size and array2[]
from cache

if (x < array1_size)
y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
8 bytes of data (value doesn’t matter)

Memory at array1 base+1000:
09 F1 98 CC 90...(something secret)

array2[ 0*4096]
array2[ 1*4096]
array2[ 2*4096]
array2[ 3*4096]
array2[ 4*4096]
array2[ 5*4096]
array2[ 6*4096]
array2[ 7*4096]
array2[ 8*4096]
array2[ 9*4096]
array2[10*4096]
array2[11*4096]

� � �

Contents don’t matter

Uncached Cached

only care about cache status

Conditional Branch Attack (Variant 1)



if (x < array1_size)
y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
8 bytes of data (value doesn’t matter)

Memory at array1 base+1000:
09 F1 98 CC 90...(something secret)

array2[ 0*4096]
array2[ 1*4096]
array2[ 2*4096]
array2[ 3*4096]
array2[ 4*4096]
array2[ 5*4096]
array2[ 6*4096]
array2[ 7*4096]
array2[ 8*4096]
array2[ 9*4096]
array2[10*4096]
array2[11*4096]

Contents don’t matter

Uncached Cached
� � �

only care about cache status

Attacker calls victim with x=1000

Speculative exec while waiting for 
array1_size:

ê Predict that if() is true

ê Read address (array1 base + x)  
(using out-of-bounds x=1000)

ê Read returns secret byte = 09
(in cache ⇒ fast )

Conditional Branch Attack (Variant 1)



if (x < array1_size)
y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
8 bytes of data (value doesn’t matter)

Memory at array1 base+1000:
09 F1 98 CC 90...(something secret)

array2[ 0*4096]
array2[ 1*4096]
array2[ 2*4096]
array2[ 3*4096]
array2[ 4*4096]
array2[ 5*4096]
array2[ 6*4096]
array2[ 7*4096]
array2[ 8*4096]
array2[ 9*4096]
array2[10*4096]
array2[11*4096]

Contents don’t matter

Uncached Cached
� � �

only care about cache status

Conditional Branch Attack (Variant 1)

Attacker calls victim with x=1000
…

ê Request mem at (array2 base + 09*4096)

ê Bring array2[09*4096] into the cache

ê Realize if() is false, discard speculative work

Finish operation and return to caller



if (x < array1_size)
y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
8 bytes of data (value doesn’t matter)

Memory at array1 base+1000:
09 F1 98 CC 90...(something secret)

array2[ 0*4096]
array2[ 1*4096]
array2[ 2*4096]
array2[ 3*4096]
array2[ 4*4096]
array2[ 5*4096]
array2[ 6*4096]
array2[ 7*4096]
array2[ 8*4096]
array2[ 9*4096]
array2[10*4096]
array2[11*4096]

Contents don’t matter

Uncached Cached
� � �

only care about cache status

Conditional Branch Attack (Variant 1)

Attacker calls victim with x=1000
…
• Measures read time for array2[i*4096] 

for all i

• Read for i=09 is fast (because cached!), 
reveals the value of the secret byte

• Repeat with many x (10KB/s)



index will be in-bounds on training passes,
and out-of-bounds on attack passes

JIT thinks this check ensures index < length, so it omits bounds 
check in next line.  Separate code evicts length for attack passes

Do the out-of-bounds read on attack passes!

Keeps the JIT from adding unwanted bounds checks on the next line

Leak out-of-bounds read result into cache state!

Need to use the result so the 
operations aren’t optimized away

“|0” is a JS optimizer trick 
(makes result an integer)

if (index < simpleByteArray.length) {
index = simpleByteArray[index | 0];
index = (((index * TABLE1_STRIDE)|0) & (TABLE1_BYTES-1))|0;
localJunk ^= probeTable[index|0]|0;

}
4096 bytes = memory page size

◦ Browsers run JavaScript from untrusted websites, JIT compiler inserts bounds checks on array accesses

◦ Speculative execution runs through safety checks… 

Evict length/probeTable from JavaScript (easy), then use timing to detect newly-cached location in probeTable

Violating JavaScript Sandbox



Indirect branches can go anywhere, e.g.,  jmp[rax]
◦ If destination is delayed, CPU guesses and proceeds speculatively

◦ Find an indirect jmp with attacker-controlled register(s), then cause 
mispredict to a useful ‘gadget’   

y = array2[array1[x]*4096]; 

Attack steps:
◦ Mistrain branch prediction so speculative execution will go to gadget
◦ Evict address [rax] from cache to cause speculative execution

◦ Execute victim so it runs gadget speculatively
◦ Detect change in cache state to infer memory contents

Indirect Branches (Variant 2)



https://therecord.media/first-fully-weaponized-spectre-exploit-discovered-online/

March 1, 2021

Can dump /etc/shadow password file



Mitigating Spectre: Restore Cache State

Idea: fully restore cache state when speculation fails   

Insecure! Speculative execution can have observable side 
effects beyond the cache state

if (x < array1_size) {
y = array1[x];
do_something_observable(y);

}

occupy a bus (detectable from another core),
or cause EM radiation



Mitigating Spectre: Remove All Branches?

DOOM with no branches:

one frame every ~7 hours



Mitigating Spectre: Stop Speculation

if (x < array1_size)
LFENCE // processor instruction
y = array2[ array1[x]*4096 ];

Insert LFENCEs manually?
Often millions of control flow paths
Too confusing - speculation runs 188++ instructions, crosses modules
Too risky – miss one and attacker can read entire process memory

Put LFENCES everywhere? Abysmal performance - LFENCE is very slow
Not in binary libraries, compiler-created code patterns

Insert by smart compiler?
Protect only known bad patterns = unsafe
• Microsoft Visual C/C++ /Qspectre unsafe for 13 of 15 tests

⇒ Protect all potentially exploitable patterns

Idea: insert LFENCE on all vulnerable code paths   

Efficient, no impact on benchmark software
Transfers blame from CPU to software: “should of put an LFENCE here!”



Meltdown

1  raise_exception();
2  // the line below is never reached 
3  access(probe_array[data * 4096]);

Intuition



1 rcx = kernel address 
2 rbx = probe array 
3 retry: 
4 mov al, byte [rcx] 
5 shl rax, 0xc 
6 jz retry 
7 mov rbx, qword [rbx + rax]

Access privileged memory

Multiply by page size

Read from an attacker’s 
(unprivileged) array at 
(secret value) * 212

Retry reading 
privileged memory

Attacker times accessing [rbx + rax]  for different values of rax
When finds one that loads fast, learns sensitive byte

Meltdown: Core Spy Code



Meltdown Mitigation

KAISER/KPTI (kernel page table isolation): 
remove kernel memory mapping in user-space processes
◦ Some performance impact
◦ Some kernel memory still needs to be mapped



More Attacks

◦ Foreshadow

◦Rogue inflight data load (RIDL) and Fallout

◦ZombieLoad

◦ Store-to-leak forwarding

All enable reading unauthorized memory (client, cloud, SGX)

Mitigating incurs significant performance costs


