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StackGuard

Embed “canaries” (stack cookies) in stack frames and 
verify their integrity prior to returning from the function

Top of
stack

buf sfp ret
addr

Local variables Pointer to
previous
frame

Frame of the
calling function

Return
execution to
this address

canary

Choose random value on program start
(attacker can’t guess what this value will be) or

terminator canary: “\0”, newline, linefeed, EOF
because strcpy, etc. won’t copy beyond “\0”

Any overflow of local variables must damage the canary



StackGuard / Canary Implementation

StackGuard requires code recompilation

Checking canary integrity prior to every function return 
causes a performance penalty
◦ For example, 8% for Apache Web server

StackGuard can be defeated
◦ A single memory copy where the attacker controls both the 

source and the destination is sufficient

◦ Or the attacker can infer the value of the canary



Low memory 
addresses

High memory
addresses

main 
local 
vars

…argv[1]main 
EIP + 5

main 
EBPlocal vars canary

Stack Canaries in gcc

Flag Default? Notes

-fno-stack-protector No Turns off protections

-fstack-protector Yes Adds to funcs that call alloca() & w/ arrays larger than 
8 chars (--param=ssp-buffer-size changes 8)

-fstack-protector-strong No Also funcs w/ any arrays & refs to local frame 
addresses

-fstack-protector-all No All funcs



Defeating StackGuard

Suppose the program contains *dst=buf[0] where the attacker controls both dst and buf

buf sfp RET

Return execution to
this address

canarydst

sfp RETcanaryBadPointer, attack code &RET

Overwrite the destination of memory copy 
with the address of saved EIP on the stack



“Reading” the Stack for the Canary Value

A common design for crash recovery:

◦When process crashes, restart automatically (for availability)

◦ If relaunched using fork, canary is unchanged

Attacker can now
extract the canary
byte by byte

ret
addrC  A   N   A   R  Ylocal

buffer
⋯

ret
addrC  A   N   A   R  Y

local
buffer

⋯

ret
addrC  A   N   A   R  Ylocal

buffer
⋯

ret
addrC  A   N   A   R  Y

local
buffer

⋯

A

B

C

C  A

crash

crash

No crash

No crash



Low memory 
addresses

High memory
addresses

StackShield:
• Function call: copy return address to safer location (beginning of .data)
• Function exit: check if stack value is different on function exit

Make a copy

Circumvention: 
• Overwrite both the return address & saved copy, if possible
• Hijack control flow without overwriting the return address

main 
local 
vars

…argv[1]main 
EIP + 5

main 
EBPlocal vars

StackShield



ProPolice / SSP: Safer Stack Layout

args

return address

SFP

CANARY

arrays

local variables

Stack
growth

No arrays or pointers

Ptrs, but no arrays

String
growth

Cannot overwrite any pointers
by overflowing an array

exception handler ptrs

IBM, used in gcc 3.4.1; also MS compilers



What Can Still Be Overwritten?

◦ Other string buffers in the vulnerable function

◦ Exception handling records (stored on the stack!)

◦ Pointers to virtual method tables
◦ C++: call to a member function passes as an argument “this” pointer to an object 

on the stack
◦ Stack overflow can overwrite this object’s vtable pointer and make it point into an 

attacker-controlled memory
◦ When a virtual function is called (how?), control is transferred to attack code (why?)

Do canaries help in this case? 
Hint: when is the integrity of the canary checked?



Code Red Worm (2001)

…

CANARY

buffer

exception handler

URL decoding routine in 
Microsoft Web server

…
CALL EBX
…

stack guard routine notices, 
calls the exception handler

EBX register Worm’s main body on the heap

Overwritten to point to a 
CALL EBX instruction inside 
the stack-guard routine

stack smashed

Finds the worm’s 
main body and 

executes it



Safe Exception Handling

◦ Exception handler record must be on the stack of the current thread

◦Must point outside the stack (why?) 

◦Must point to a valid handler
◦ Microsoft’s /SafeSEH linker option: header of the binary lists all valid handlers

◦ Exception handler records must form a linked list, terminating in 
FinalExceptionHandler
◦ Windows Server 2008: SEH chain validation
◦ Address of FinalExceptionHandler is randomized (why?)



SEHOP  

◦ SEHOP: Structured Exception Handling Overwrite Protection (since Win Vista SP1)

◦ Observation: SEH attacks typically corrupt the “next” entry in SEH list

◦ SEHOP adds a dummy record at top of SEH list

◦When exception occurs, dispatcher walks up list and verifies dummy record is 
there; if not, terminates process



Shadow Stack

https://techcommunity.microsoft.com/t5/windows-kernel-internals/understanding-
hardware-enforced-stack-protection/ba-p/1247815

• On every CALL instruction, return 
addresses are pushed onto both 
the call stack and shadow stack

• On RET instructions, a comparison 
is made. If addresses don’t match, 
CPU raises an exception that traps 
into the kernel.

On chipsets with Intel’s 
Control-Flow Enforcement 
Technology (CET) instructions



Non-Control Targets

◦ Configuration parameters
◦ Example: directory names that confine remotely 

invoked programs to a portion of the file system

◦ Pointers to names of system programs
◦ Example: replace the name of a harmless script 

with an interactive shell

◦ This is not the same as return-to-libc (why?)

◦ Branch conditions in input validation code

Chen et al. “Non-Control-Data Attacks Are Realistic Threats”

None of these exploits 
violate the integrity of the 
program’s control flow

Only the original program 
code is executed!



SSH Authentication Code

Loop until one of 
the authentication
methods succeeds

detect_attack() prevents
checksum attack on SSH1…

…and also contains an
overflow bug which permits
the attacker to put any value
into any memory location

write 1 here

Break out of the authentication loop 
without authenticating properly

Chen et al. “Non-Control-Data Attacks Are Realistic Threats”



Reducing Lifetime of Critical Data

Reset flag here, right before
doing the checks



Check that URL doesn’t contain “/..”

ptr changes after it was checked 
but before it was used!   
(Time-Of-Check-To-Time-Of-Use attack)

Register containing pointer to URL
is pushed onto stack…

… overflown

… and read from stack
At this point, overflown ptr may point
to a string containing “/..”

GHTTPD Web Server

Chen et al. “Non-Control-Data Attacks Are Realistic Threats”



Predictability is a fatal 
flaw in any defensive 

system



Problem: Lack of Diversity

Classic memory exploits need to know the (virtual) address to hijack control
◦ Address of attack code in the buffer

◦ Address of a standard kernel library routine

Same address is used on many machines
◦ Slammer infected 75,000 MS-SQL servers in 10 minutes using identical code on every 

machine

Idea: introduce artificial diversity 
◦ Make stack addresses, addresses of library routines, etc. unpredictable and different from 

machine to machine



ASLR

Address Space Layout Randomization

Randomly choose the base address of stack, heap, code segment, the 
location of the Global Offset Table
◦ Randomization can be done at compile- or link-time, or by rewriting existing binaries

Randomly pad stack frames and malloc’ed areas

Other randomization methods: randomize system call ids or even 
instruction set



ASLR in Action

Booting twice loads libraries in different locations



Base-Address Randomization

Only the base address is randomized
◦ Layouts of stack and library table remain the same

◦ Relative distances between memory objects are not changed by base address randomization

To attack, enough to guess the base shift

A 16-bit value can be guessed by brute force
◦ Try 215 (on average) overflows with different values for the address of a known library function 

– how long does it take?
◦ If guess is wrong, target will simply crash & restart usleep() is a good candidate (why?)



Web server with a buffer overflowrequest

Attacker makes a 
guess of where usleep()
is located in memory

Failure crashes the child process 
immediately and therefore kills connection

Success crashes the child process after 
sleeping for 0x01010101 microseconds 
and kills connection

Unlikely to work on a 64-bit architecture

Brute-Force Guessing



ASLR in Windows (since 2008)

Stack randomization
◦ Find Nth hole of suitable size (N is a 5-bit random value), then random word-aligned 

offset (9 bits of randomness)

Heap randomization: 5 bits
◦ Linear search for base + random 64K-aligned offset

EXE randomization: 8 bits
◦ Preferred base + random 64K-aligned offset

DLL randomization: 8 bits
◦ Random offset in DLL area; random loading order



Defeating ASLR by Reading the Stack

Request (can trigger buffer overflow in stack)

Apache forks
off child process
to handle request

Response (unless process crashes)

caller 
local varsParam1EIPEBPlocal 

var1 …random
canary

junk x y z w x y z w

Reading the stack for EBP/EIP can give approximate address offset



ASLR Against Heap Attacks
<SCRIPT language="text/javascript">

shellcode = unescape("%u4343%u4343%...");

overflow-string = unescape(“%u2332%u4276%...”);

cause-overflow( overflow-string );  // overflow  buf[ ]

</SCRIPT>

pt
rbuf[256] da
ta

object

vtable

shell
code

Where will the browser place 
the shellcode on the heap???



Heap Spraying

Force JavaScript JiT (“just-in-time” compiler) to fill heap with executable 
shellcode, then point SFP or vtable ptr anywhere in the spray area

heap

NOP  slide shellcode

execute enabled execute enabled

execute enabledexecute enabled

execute enabled execute enabled

JIT is a great target: it creates code 
on the fly, thus its memory must be 
writeable, readable, executable



var  nop = unescape(“%u9090%u9090”)

while (nop.length < 0x100000)  nop += nop

var shellcode = unescape("%u4343%u4343%...");

var x = new Array ()

for (i=0;  i<1000;  i++) {

x[i] = nop + shellcode;

}

JavaScript Heap Spraying

Pointing a function pointer 
anywhere in the heap will cause 
shellcode to execute



Heap Feng Shui (aka Heap Grooming)

Achieve the desired heap layout by a sequence of crafted memory 
allocations and deallocations

object O

free blocks

heap

Safari PCRE exploit (2008): 
placing the vulnerable 
object next to attacker-
controlled memory



Heap Spraying in EternalBlue

https://risksense.com/wp-content/uploads/2018/05/White-Paper_Eternal-Blue.pdf



Heap Overflow Mitigations

Better browser architecture: store JavaScript strings in a separate 
heap from browser heap

Better memory layout (OpenBSD and Windows 8):

guard  pages (non-writable pages in virtual memory)

prevents 
cross-page
overflows

In theory, could allocate every object on its own page, but too wasteful in physical memory



Memory Attacks: 
Causes and Cures

“Classic” memory exploit involves code 
injection
• Put malicious code at a predictable location in 

memory, usually masquerading as data
• Trick vulnerable program into passing control to it

• Overwrite saved EIP, function callback pointer, etc.

Idea: prevent execution of untrusted 
code

• Make stack and other data areas non-executable
• Digitally sign all code
• Ensure that all control transfers are into a trusted, 

approved code image



WÅX / DEP

Mark all writeable memory locations as non-
executable
◦ Example: Microsoft’s DEP - Data Execution 

Prevention
◦ This blocks most (not all) code injection exploits

Hardware support
◦ AMD “NX” bit, IA-64 “XD” bit, ARMv6 “XN” bit
◦ OS can make a memory page non-executable

Widely deployed
◦ Windows (since XP SP2), Linux (via PaX patches), 

OpenBSD, OS X (since 10.5)



Issues with WÅX / DEP

Some applications require executable stack
◦ Example: JavaScript, Flash, Lisp, other interpreters

◦ GCC stack trampolines (calling conventions, nested functions)

JVM makes all its memory RWX – readable, writable, executable (why?)

Some applications (eg, browsers) don’t use DEP

Attack can start by “returning” into a memory mapping routine and make 
the page containing attack code writeable



What Does WÅX Not Prevent?

Can still corrupt stack!
◦ … or function pointers or critical data on the heap, but that’s not important right now

As long as “saved EIP” points into existing code, WÅX protection will not 
block control transfer

This is the basis of return-to-libc exploits: overwrite saved EIP with the 
address of any library routine, arrange memory to look like arguments

Does not look like a huge threat, since 
attacker cannot execute arbitrary code, 
especially if system() is not available



return-to-libc on Steroids

Overwritten saved EIP need not point to the beginning of a library routine. 
Any existing instruction in the code image is fine… processor will execute the 
sequence starting from that instruction

What if the instruction sequence contains RET?
◦ Execution will be transferred to… where?

◦ Read the word pointed to by stack pointer (ESP)
◦ Guess what?  Its value is under attacker’s control!  (why?) 

◦ Use it as the new value for EIP… now control is transferred to an address of 
attacker’s choice!

◦ Increment ESP to point to the next word on the stack



Chaining RETs for Fun and Profit

Can chain together sequences ending in RET
◦ Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks 

exploitation technique” (2005)

What is this good for?  Everything!
◦ Turing-complete language
◦ Build “gadgets” for load-store, arithmetic, logic, control flow, system calls

◦ Attack can perform arbitrary computation using no injected code at all!

Hovav Shacham
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Ordinary Programming

◦ Instruction pointer (EIP) determines which instruction to fetch and execute

◦ Once processor has executed the instruction, it automatically increments EIP to next instruction

◦ Control flow by changing the value of EIP



Return-Oriented Programming

◦ Stack pointer (ESP) determines which instruction sequence to fetch and execute

◦ Processor doesn’t automatically increment ESP … but RET at end of each instruction sequence does

Key idea: build arbitrary 
computations from existing 
code sequences ending in RET



No-Ops (Useful for No-Op Sleds)

No-op instruction does 
nothing but advance EIP

Return-oriented equivalent:
pointer to RET instruction 
(advances ESP)



Immediate Constants

Instructions can encode 
constants

Return-oriented equivalent:
• Store value on the stack
• Pop into register to use



Control Flow

(Conditionally) set EIP 
to a new value

Return-oriented equivalent:
(Conditionally) set ESP to a 
new value



Gadgets: Multi-Instruction Sequences

◦ Sometimes more than one instruction sequence needed to encode logical unit

◦ Example: load from memory into register
◦ Load address of source word into EAX

◦ Load memory at (EAX) into EBX



“The Gadget” (July 1945)

◦ Gadgets built from found code 
sequences: load-store, arithmetic & 
logic, control flow, syscalls

◦ Found code sequences are 
challenging to use!
◦ Short; perform a small unit of work

◦ No standard function prologue/epilogue

◦ Haphazard interface, not an ABI

◦ Some convenient instructions not always 
available

ROP gadgets



Conditional Jumps

Conventional programming

◦ cmp compares operands and sets several flags 
in the EFLAGS register
◦ Luckily, many other ops set EFLAGS as a side effect

◦ jcc jumps when flags satisfy certain conditions
◦ But this causes a change in EIP… not useful (why?)

Return-oriented programming

◦ Need conditional change in stack pointer (ESP)

◦ Strategy:
◦ Move flags to a general-purpose register

◦ Compute either delta (if flag is 1) or 0 (if flag is 0)

◦ Perturb ESP by the computed delta



Phase 1: Perform Comparison

◦ neg calculates two’s complement
◦ As a side effect, sets carry flag (CF) if the argument is nonzero

◦ Use this to test for equality

◦ sub is similar, use to test if one number is greater than another



Phase 2: Store 1-or-0 to Memory

� Clear ECX
� EDX points to destination
� adc adds up its operands & the carry flag;

result will be equal to the carry flag (why?)
� Store result of adc (carry flag) into destination 

�
�

�

�



Two’s-complement 
negation:
0 becomes 0…0;
1 becomes 1…1

Bitwise AND with delta
(in ESI)

Phase 3: Compute Delta-or-Zero



Phase 4: Perturb ESP by Delta



Finding Instruction Sequences

◦ Any instruction sequence ending in RET is useful

◦ Algorithmic problem: recover all sequences of valid 
instructions from libc that end in a RET

◦ At each RET instruction (C3 byte), look back:
◦ Are the preceding i bytes a valid instruction?
◦ Recur from found instructions

◦ Collect found instruction sequences in a trie



ret}

Unintended 
Instructions

c7
45
d4
01
00
00
00
f7
c7
07
00
00
00
0f
95
45
c3

movl $0x00000001, -44(%ebp)

test $0x00000007, %edi

setnzb -61(%ebp)

add %dh, %bh

movl $0x0F000000, (%edi)

xchg %ebp, %eax
inc %ebp}

}

Actual code from ecb_crypt()

On x86, can jump into the 
middle of an instruction. If the 
following bytes are valid 
opcodes, processor will execute!



The Joy of x86

Register-memory machine
• Plentiful opportunities for accessing memory

Register-starved
• Multiple sequences likely to operate on same 

register

Instructions are variable-length, unaligned
• More instruction sequences exist in libc
• Instruction types not issued by compiler may be 

available

Unstructured call/ret ABI
• Any sequence ending in a return is useful



SPARC: The Un-x86

◦ Load-store RISC machine
◦ Only a few special instructions access memory

◦ Register-rich
◦ 128 registers; 32 available to any given function

◦ All instructions 32 bits long; alignment enforced
◦ No unintended instructions

◦ Highly structured calling convention
◦ Register windows

◦ Stack frames have specific format

◦ Use instruction sequences that are 
suffixes of real functions

◦ Dataflow within a gadget
◦ Structured dataflow to dovetail with 

calling convention

◦ Dataflow between gadgets
◦ Each gadget is memory-memory

◦ Turing-complete computation!

ROP on SPARC



Observation: abnormal execution sequence 
violates LIFO call-return order

Defense: before a system call, check that every 
prior ret is not abnormal

pop rdi
ret

pop rsi
ret

pop rax
ret

syscall
ret

kernel

kBouncer

kBouncer
winner of the 2012 Microsoft 
BlueHat Prize ($200K)

ret returns to an address 
that does not follow a call



Intel’s Last Branch Recording (LBR):  
◦ Stores 16 last executed branches in a set of on-chip registers (MSR)

◦ Can read using rdmsr instruction from privileged mode 

kBouncer:  before entering kernel, verify that last 16 ret’s are normal
◦ Requires no application code changes, minimal overhead

◦ Limitations: attacker can ensure 16 calls prior to syscall are valid

pop rdi
ret

pop rsi
ret

pop rax
ret

syscall
ret

kernel

kBouncer

kBouncer
winner of the 2012 Microsoft 
BlueHat Prize ($200K)



Defeating Other ROP Defenses

“Jump-oriented” programming
◦ Use update-load-branch sequences instead of returns 

+ a trampoline sequence to chain them together

Craft a separate function call stack and call 
legitimate functions present in the program

“Return-oriented programming 
without returns” (2010)

Checkoway et al.’s attack on 
the Sequoia AVC Advantage 
voting machine

Harvard architecture: code 
is separate from data, thus 
code injection is impossible.
ROP works fine!



English Shellcode

◦ Convert any shellcode into an English-
looking text

◦ Encoded payload, decoder uses only a 
subset of x86 instructions (those whose 
binary representation corresponds to English 
ASCII characters)
◦ Example: popa – “a”, push %eax – “p”

◦ Additional processing and padding

Mason et al. (2009)



CFI: Control-Flow Integrity

Main idea: self-protecting code

Pre-determine control flow graph (CFG) of an application
◦ Static analysis of source code

◦ Static binary analysis   ¬ CFI
◦ Execution profiling
◦ Explicit specification of security policy

Insert checks to ensure that execution follows the pre-
determined control flow graph

Abadi et al. “Control-Flow Integrity” (2005)



CFI via Binary 
Instrumentation

◦ Use binary rewriting to instrument code with 
runtime checks

◦ Inserted checks ensure that whenever an 
instruction transfers control, destination is 
valid according to the CFG
◦ Therefore, the execution always stays within the 

statically determined CFG

Goal: prevent injection of arbitrary code and invalid 
control transfers (e.g., return-to-libc) even if the attacker 
has complete control over the thread’s address space



CFG Example

This CFG permits more executions than are actually possible (why?)



Control Flow 
Enforcement 

in CFI

For each control transfer, determine statically its 
possible destination(s)

Insert a unique bit pattern at every destination
◦ Two destinations are equivalent if static CFG contains 

edges to each from the same source

◦ Use same bit pattern for equivalent destinations

Insert binary code that at runtime will check 
whether the bit pattern of the target instruction 
matches the pattern of possible destinations

This is imprecise (why?)



CFI: Example of Instrumentation
Original code

Instrumented code

Abuse an x86 assembly instruction to
insert “12345678” tag into the binaryJump to the destination only if

the tag is equal to “12345678”



Preventing 
Circumvention

Unique IDs
◦ Bit patterns chosen as destination IDs must not 

appear anywhere else in the code memory except ID 
checks

Non-writable code
◦ Program should not modify code memory at runtime

Non-executable data
◦ Program should not execute data as if it were code

Enforcement: hardware support + prohibit 
system calls that change protection state + 
verification at load-time

What about run-time code 
generation and self-modification?



Improving CFI Precision

Suppose a call from A goes to C, and a call from B goes to either C, or D 
(when can this happen?)
◦ CFI will use the same tag for C and D, but this permits an invalid call from A to D

◦ Possible solutions: (1) duplicate code or inline; (2) multiple tags

Function F is called first from A, then from B.  What’s a valid destination 
for its return?
◦ CFI will use the same tag for both call sites, but this allows F to return to B after 

being called from A
◦ Solution: shadow call stack



CFI Security 
Guarantees

Effective against attacks based on illegitimate 
control-flow transfer
◦ Stack-based buffer overflow, return-to-libc exploits, 

function pointer overwrite

Does not protect against attacks that do not 
violate the program’s original CFG
◦ Incorrect arguments to system calls

◦ Substitution of file names
◦ Other data-only attacks



Possible Execution of Memory

Credit: Ulfar Erlingsson



Protects indirect calls by checking against a bitmask of 
all valid function entry points in the executable

ensures the target is
the entry point of a
function

Control-Flow Guard (CFG) in Windows 10

Poor man’s CFI, sort of…

• Does not prevent attacker from causing a jump to a valid wrong function
• Hard to build accurate control flow graph statically



Intel’s CET

New EndBranch (ENDBR64) instruction

◦ Compiler inserts EndBranch at all valid destinations 
of control transfers

◦ After an indirect JMP or CALL, the next instruction 
in the instruction stream must be EndBranch

◦ If not, then trigger a #CP fault and halt execution

call eax

⦚

⦚

endbranch

add ebp, 4

⦚

⦚

Deployed in Intel Tiger Lake (2020)

• Does not prevent attacker from causing a jump to a valid wrong function
• Hard to build accurate control flow graph statically



void HandshakeHandler(Session *s, char *pkt) {
s->hdlr = &LoginHandler;
... Buffer overflow over Session struct ...

}

void LoginHandler(Session *s, char *pkt) {
bool auth = CheckCredentials(pkt);
s->dhandler = &DataHandler;

}

void DataHandler(Session *s, char *pkt);

Attacker overwrites function 
pointer to call DataHandler, 
bypassing authentication 

Call to DataHandler is permitted 
by the static control-flow graph

Bypassing CFG and CET



ARM Memory Tagging Extension (MTE)

Every 64-bit memory pointer P has a 4-bit “tag” in top byte

Every 16-byte user memory region R has a 4-bit “tag”

Processor ensures:  
if P is used to read R then tags are equal, 
otherwise hardware exception

New hardware instructions
LDG, STG: load and store tag to memory 
region (used by malloc and free)
ADDG, SUBG:  pointer arithmetic on an 
address preserving tags

This prevents overflow and use-after-free

Note: does not prevent inter-object overflow in C++ (why?)



Cryptographic CFI (CCFI)

Every time a jump address is written/copied anywhere in memory, compute 
64-bit  AES-MAC and append to address

On heap:   tag =  AES(k, (jump-address, 0 ll source-address) )

On stack:   tag =  AES(k, (jump-address, 1 ll stack-frame) )

Before control transfer, verify AES-MAC and crash if invalid

Where to store key k?           In xmm registers   (not memory)

also ARM pointer authentication


