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The Morris Worm

Released in 1988 by Robert Morris
◦ Graduate student at Cornell, son of the NSA chief scientist

◦ First person convicted under the Computer Fraud and Abuse 
Act (3 years of probation and 400 hours of community service)

Morris claimed it was intended to harmlessly measure 
the Internet, but it created new copies as fast as it could 
and overloaded infected hosts

$10-100M worth of damage

Famous CS prof at MIT,
founder of the Y-combinator

Floppy with the source code 
of the Morris worm, 
Computer History Museum



Famous Internet Worms

Morris worm (1988): overflow in fingerd
◦ 6,000 machines infected (10% of existing Internet)

CodeRed (2001): overflow in MS-IIS server
◦ 300,000 machines infected in 14 hours

SQL Slammer (2003): overflow in MS-SQL server
◦ 75,000 machines infected in 10 minutes (!!)

Sasser (2004): overflow in Windows LSASS
◦ Around 500,000 machines infected

Responsible for user 
authentication in Windows

Highest fraction of 
the Internet infected

Fastest



And The Band Marches On

Conficker (2008-09): overflow in Windows RPC
◦ Around 10 million machines infected (estimates vary)

Stuxnet (2009-10): several zero-day overflows + same Windows RPC 
overflow as Conficker
◦Windows print spooler service, LNK shortcut display, task scheduler

Flame (2010-12): same print spooler and LNK overflows as Stuxnet

Largest number of 
machines infected

Most sophisticated (?) 
cyberespionage virus



EternalBlue

A complex memory exploit developed by NSA
◦ Targets Microsoft’s implementation of SMB in multiple versions of 

Windows, Siemens medical equipment, etc.

Leaked by “Shadow Brokers” in April 2017

Used by WannaCry ransomware and NotPetya

Integer overflow
Buffer overflow
Heap spraying

North Korean attack; 200,000 
victims, including major impact 
on NHS hospitals in the UK

Major cyberattack on Ukraine that 
propagated to other countries, 
estimated $10 billion damage



Their computer attacks used some of the world’s most destructive 
malware to date, including: KillDisk and Industroyer, which each 
caused blackouts in Ukraine; NotPetya, which caused nearly $1 billion 
in losses to the three victims identified in the indictment alone; and 
Olympic Destroyer, which disrupted thousands of computers used to 
support the 2018 PyeongChang Winter Olympics.



Memory Exploits

Buffer is a data storage area inside 
computer memory (stack or heap)
◦ Intended to hold pre-defined amount of data

Simplest exploit: supply executable code 
as “data”, trick victim’s machine into 
executing it
◦ Code will self-propagate or give attacker 

control over machine

Pointer assignment, format strings, memory 
allocation and de-allocation, function pointers, calls 
to library functions via offset tables …

In general, attack need not involve 
code injection or data execution!



Running Example



This program will run as root!



Executing Machine Code

Compiler 
(gcc)

C code of simplified meet.c

Disassembled machine code for main



Executing Machine Code

Program state includes 
• CPU registers (32-bit on x86)
• Memory (heap and stack)

Execute instructions one by one, 
using and modifying state



ESI

EDI

ESP

EBP

DX

CX

BX

AX

EDX

ECX

EBX

EAX AL

BL

CL

DL

AH

BH

CH

DH

(stack pointer)

(base pointer)

32 
bits

x86 Registers 



Executing Machine Code

Program state includes 
• CPU registers (32-bit on x86)
• Memory (heap and stack)

Execute instructions one by one, 
using and modifying state

Example:     add $0x4,%eax
Example:     nop

This adds 4 to the value in the EAX register

Single-byte (0x90) “no op” instruction, does nothing! 



Linux Process Memory Layout on x86_64

unused

bss

run time heap

shared libraries

user stack
%sp

(stack pointer)

text and .data text: machine code of executable
data: global initialized variables

stack: local variables
information to track 
function calls

bss: “below stack section”
global uninitialized variables

heap: dynamic variables

0x0000 7FFF FFFF FFFF

0x0000 7F1F6 …

0x0000 0000 0040 0040

High memory 
addresses

Low memory 
addresses



Stack Buffers

Suppose a Web server contains this function

void func(char *str) {

char buf[126];

strcpy(buf,str);

}

When this function is invoked, a new frame
(activation record) is pushed onto the stack

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer



Execute code at this 
address after func() finishes

Frame Layout

Top of
stack

Stack grows this way

buf sfp
ret
addr str

Local variables

Frame of the
calling function

ArgumentsPointer to
previous frame

void func(char *str) {
char buf[126];
strcpy(buf,str);

}

Saved EIP:



main 
local 
vars

Low memory 
addresses

High memory
addresses

stack base pointer
(EBP)

…

Function Call in meet.c

Pushing argv[1] 
onto stack

argv[1]

stack pointer 
(ESP)

main 
EIP + 5

main 
EBPgreeting local var name

stack pointer 
(ESP)

eip

eip

stack pointer 
(ESP)

eip

stack base pointer
(EBP)

eip

stack pointer 
(ESP)

…. (more stuff including strcpy) …
eip
eipeip



What If The Buffer Is Overstuffed?

Memory pointed to by str is copied onto stack…

void func(char *str) {
char buf[126];
strcpy(buf,str);

}

If a string longer than 126 bytes is copied into buffer, it will overwrite 
adjacent stack locations

strcpy does NOT check whether the string 
at *str contains fewer than 126 characters

buf str

This will be interpreted as the return address!

overflow Top of
stack

Frame of the
calling function



main 
local 
vars

…

Smashing the Stack

Pushing argv[1] 
onto stack

argv[1]

stack base pointer
(EBP)

stack pointer 
(ESP)

…. (more stuff including strcpy) …
eip

main 
EIP + 5

main 
EBPgreeting local var name Bad

EIP
Bad
EBPAdversarial values

stack pointer 
(ESP)

stack pointer 
(ESP)

eip

Bad eip ????

Low memory 
addresses

High memory
addresses



Overwriting EBP
• When greeting() returns, stack is corrupted because stack frame points to wrong address

Overwriting EIP
• When greeting() returns, will jump to address pointed to by the EIP value “saved” on stack

main 
local 
vars

…argv[1]main 
EIP + 5

main 
EBPgreeting local var name

Bad
EIP

Bad
EBP

Adversarial values

Targets of Stack Smashing



Make buffer include 
executable machine code

When greeting() returns, jumps
to address pointed to by Bad EIP

Control-Flow Hijacking

main 
local 
vars

…argv[1]main 
EIP +2

main 
EBPgreeting local var name Bad

EIP
Bad
EBPAdversarial values

Have EIP point back 
into adversarial buffer

Low memory 
addresses

High memory
addresses



machine 
code ptr

Building an Exploit

executable 
machine code

pointer to 
this code



Building Shell Code

#include <stdio.h>

void main() {
char *name[2];

name[0] = "/bin/sh";
name[1] = NULL;
execve(name[0], name, NULL);
exit(0);

}

Shell code from AlephOne

movl string addr,string_addr_addr
movb $0x0,null_byte_addr
movl $0x0,null_addr
movl $0xb,%eax
movl string_addr,%ebx
leal string_addr,%ecx
leal null_string,%edx
int   $0x80
movl $0x1, %eax
movl $0x0, %ebx
int   $0x80
/bin/sh string goes here.



more 
code ptr

jmp offset-to-call           # 2 bytes
popl %esi # 1 byte
movl %esi,array-offset(%esi)  # 3 bytes
movb $0x0,nullbyteoffset(%esi) # 4 bytes
movl $0x0,null-offset(%esi)   # 7 bytes
movl $0xb,%eax                # 5 bytes
movl %esi,%ebx # 2 bytes
leal array-offset,(%esi),%ecx # 3 bytes
leal null-offset(%esi),%edx # 3 bytes
int $0x80                    # 2 bytes
movl $0x1, %eax # 5 bytes
movl $0x0, %ebx # 5 bytes
int $0x80 # 2 bytes
call   offset-to-popl # 5 bytes
/bin/sh string goes here
empty # 4 bytes

jmp call
popl “/bin/sh” emptyaddress of 

“/bin/sh”

Building Shell Code



Another issue:
strcpy stops when it hits a NULL byte

char shellcode[] =
"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00"
"\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80"
"\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\xff"
"\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";

Solution:
Alternative machine code that avoids NULLs

Building Shell Code



Shell Code

char shellcode[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh"



How do we know what to 
set ptr (Bad EIP) to?

Crude Way to Get Stack Pointer

more 
code ptrjmp call

popl “/bin/sh” emptyaddress of 
“/bin/sh”



more 
code ptrjmp call

popl “/bin/sh” emptyaddress of 
“/bin/sh”

We can use a nop sled to make the arithmetic easier

NOPs

Instruction “xchg %eax,%eax” which has opcode \x90

Land anywhere in NOPs, and we are good to go

ptr ptr

Can also add lots of copies of ptr at end

NOP Sled



Small Buffers

What if 400 is 
changed to a small 

value, say 10?

more 
code ptrjmp call

popl “/bin/sh” emptyaddress of 
“/bin/sh”NOPs ptr ptr



Use an environment variable to store the exploit buffer
execve(“meet”, argv, envp)

• Normally, bash passes in the envp array from your shell’s environment
• Can also pass it in explicitly via execve()

.text .data .bss heap stack Env.

Low memory 
addresses

High memory
addresses

Dealing with Small Buffers

array of pointers to strings (just like argv)



.text .data .bss heap stack Env.

Low memory 
addresses

High memory
addresses

more 
codeptr jmp call

popl “/bin/sh” emptyaddress of 
“/bin/sh”NOPs

Overwrite saved return address with ptr to environment variable holding attack code

Dealing with Small Buffers



int foo (void (*funcp)()) {
char* ptr = point_to_an_array;
char buf[128];
gets (buf);
strncpy(ptr, buf, 8);
(*funcp)();

}

String 
grows

Stack 
grows

int bar (int val1) {
int  val2;
foo (a_function_pointer);

} Attacker-
controlled 
memory

val1
val2

arguments       (funcp)
return address
Saved Frame Pointer
pointer var       (ptr)
buffer               (buf)

Stack Corruption: General View



Cause: No Range Checking

strcpy does not check input size
◦ strcpy(buf, str) simply copies memory contents into buf starting from *str until “\0” is 

encountered, ignoring the size of the area allocated to buf

Many all C library functions are unsafe
◦ strcpy(char *dest, const char *src)
◦ strcat(char *dest, const char *src)

◦ gets(char *s)
◦ scanf(const char *format, …)

◦ printf(const char *format, …) 



args                  (funcp)

return address

PFP

pointer var       (ptr)

buffer               (buf)

Attack code

① Change the return address to point to the 
attack code. After the function returns, 
control is transferred to the attack code.

② … or return-to-libc: use existing 
instructions in the code segment such as 
system(), exec(), etc. as the attack code.

①

② set stack pointers to 
return to a dangerous 
library function

“/bin/sh”

system()

Attack #1: Return Address



C uses function pointers for callbacks: if pointer to F is stored in 
memory location P, then another function G can call F as (*P)(…)

attack code

Buffer with attacker-supplied 
input string

Callback
pointer

Legitimate function F

overflow

(elsewhere in memory)

Function Pointer Overflow



args               (funcp)

return address

SFP

pointer var       (ptr)

buffer               (buf)

Attack code

Syscall pointer

Global Offset Table

①

②

Attack #2: Pointer Variables

① Change a function pointer to point to 
attack code

② Any memory, on or off the stack, can be 
modified by a statement that stores a 
value into the compromised pointer

strcpy(buf, str);
*ptr = buf[0];



Home-brewed range-checking string copy

void notSoSafeCopy(char *input) {
char buffer[512]; int i; 

for (i=0; i<=512; i++)
buffer[i] = input[i]; 

}
void main(int argc, char *argv[]) {

if (argc==2) 
notSoSafeCopy(argv[1]);

}

Off-By-One Overflow

1-byte overflow: can’t change saved EIP, but can change saved pointer to previous stack frame… 
On a little-endian architecture, make it point back into the buffer…
… then caller’s saved EIP will be read from the buffer!

This will copy 513 characters 
into the buffer. Oops!



args                 (funcp)

return address

SFP

pointer var       (ptr)

buffer               (buf)

Attack code

Fake return 
address
Fake SFP

Attack #3: Frame Pointer

Change the caller’s saved frame pointer to point 
to attacker-controlled memory.

Caller’s return address will be read from this memory.

Arranged like a 
real frame



Two’s Complement

Binary representation of negative integers

Represent X (where X<0) as 2N-|X|
◦ N is word size (e.g., 32 bits on x86 architecture)

0 0 0 0 … 0 1

0 1 1 1 … 1 1

1 1 1 1 … 1 1

1 1 1 1 … 1 0

1 0 0 0 … 0 0

1

231-1

-1

-2

-231

231 ??

+1



Integer Overflow

static int getpeername1(p, uap, compat) {
// In FreeBSD kernel, retrieves address of peer to which a socket is connected

…
struct sockaddr *sa;
…

len = MIN(len, sa->sa_len);
… copyout(sa, (caddr_t)uap->asa, (u_int)len);
…

}

Checks that “len” is not too big
Negative “len” will always pass this check…

… interpreted as a huge
unsigned integer here

… will copy up to 4G of 
kernel memory to user space



#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[]){
unsigned short s;
int i;
char buf[80];

if(argc < 3){
return -1;

}

i = atoi(argv[1]);
s = i;

if(s >= 80) { /* [w1] */
printf("Oh no you don't!\n");
return -1;

}

printf("s = %d\n", s);
memcpy(buf, argv[2], i);
buf[i] = '\0’;
printf("%s\n", buf);

return 0;
}

nova:signed {100} ./width1 5 hello
s = 5
hello
nova:signed {101} ./width1 80 hello
Oh no you don't!
nova:signed {102} ./width1 65536 hello
s = 0
Segmentation fault (core dumped)



void  func( char *buf1, *buf2,    unsigned int len1, len2) {

char temp[256];

if  (len1 + len2 > 256) {return -1} // length check

memcpy(temp,  buf1,  len1); // cat buffers

memcpy(temp+len1,  buf2,  len2);

do-something(temp); // do stuff

}
What if   len1 = 0x80,    len2 = 0xffffff80   ?

⇒ len1+len2 = 0

Second  memcpy() will overflow heap !!

Another Integer Overflow



INTEGER 
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Integer Overflow in EternalBlue

https://risksense.com/wp-content/uploads/2018/05/White-Paper_Eternal-Blue.pdf



Emergency Apple update 
on September 13, 2021

https://techcrunch.com/2021/09/13/apple-zero-day-nso-pegasus/

Based on an integer overflow 
vulnerability in Apple’s CoreGraphics
image rendering library



Variable Arguments in C

In C, can define a function with a variable number of arguments
◦ Example: void printf(const char* format, …)

Format specification encoded by special % characters

%d,%i,%o,%u,%x,%X – integer argument
%s – string argument
%p – pointer argument (void *)
Several others



Implementation of Variable Args

Special functions va_start, va_arg, va_end compute arguments at run-time

printf has an internal
stack pointer



va_start computes
location on the stack
past last statically
known argument

va_arg(ap,type) 
retrieves next arg 
from offset ap

Frame with Variable Args



Sloppy Use of Format Strings in C

Proper use of printf format string:
int foo=1234; 

printf(“foo = %d in decimal, %X in hex”,foo,foo);

Sloppy use of printf format string:
char buf[13]=“Hello, world!”; 

printf(buf); // should of used printf(“%s”, buf); …

This will print
foo = 1234 in decimal, 4D2 in hex

If the buffer contains a format symbol starting with %, the location pointed to 
by printf’s internal stack pointer will be interpreted as an argument of printf

This can be exploited to move printf’s internal stack pointer.  How?



Writing the Stack with Format Strings

%n format symbol tells printf to write the number 
of characters that have been printed

… printf(“Overflow this!%n”,&myVar); …

What if printf does not have an argument?
… char buf[16]=“Overflow this!%n”; 

printf(buf); …

Argument of printf is interpeted
as the destination address

14 is written into myVar (why?)

Stack location pointed to by printf’s internal stack pointer will be interpreted 
as the address into which the number of characters will be written!



RET“… attackString%n”, attack code &RET

Overwrite location under printf’s stack
pointer with the address of RET;
printf(buffer) will write the number of 
characters in attackString into RET

Return execution 
to this address

Buffer with attacker-supplied 
input string

Number of characters in
attackString must be 
equal to … what?

see “Exploiting Format String Vulnerabilities” for details

C has a concise way of printing multiple symbols: %Mx will print exactly 4M bytes (taking them from the 
stack).  Attack string should contain enough “%Mx” so that the number of characters printed is equal to the 
most significant byte of the address of the attack code.
Repeat three times (four “%n” in total) to write into &RET+1, &RET+2, &RET+3, thus replacing RET with the 
address of the attack code byte by byte.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Using %n to Write the Return Address

&RET+1



Heap Overflow

Overflowing heap memory can change important pointers

◦ File pointers
◦ Example: replace a filename pointer with a pointer into a memory location containing 

the name of a system file (instead of a temporary file, write into AUTOEXEC.BAT)

◦ Function pointers

Any memory write where the attacker controls the value and the destination 
can lead to control hijacking



vtable

Function Pointers on the Heap

Compiler-generated function pointers 
(e.g., virtual method table in C++ or JavaScript code)

pt
rbuf[256] da
ta

object T

Suppose vtable is 
on the heap next 
to a string object

FP1
FP2
FP3

vtable
method #1

method #2

method #3



vtable

Heap-Based Control Hijacking

FP1
FP2
FP3

vtable
method #1

method #2

method #3

pt
rbuf[256] da
ta

object T

Suppose vtable is 
on the heap next 
to a string object

shell
code

Compiler-generated function pointers 
(e.g., virtual method table in C++ or JavaScript code)



Dynamic Memory Management in C

Memory allocation: malloc(size_t n)
◦ Allocates n bytes and returns a pointer to the allocated memory; memory not cleared

◦ Also calloc(), realloc()

Memory deallocation: free(void * p)
◦ Frees the memory space pointed to by p, which must have been returned by a previous 

call to malloc(), calloc(), or realloc()

◦ If free(p) has already been called before, undefined behavior occurs
◦ If p is NULL, no operation is performed



Memory Management Errors

◦ Initialization errors

◦ Failing to check return values 

◦Writing to already freed memory 

◦ Freeing the same memory more than once 

◦ Improperly paired memory management 
functions (example: malloc / delete)

◦ Failure to distinguish scalars and arrays 

◦ Improper use of allocation functions

All result in 
exploitable 

vulnerabilities



<form id="form">
<textarea id="c1" name="a1" ></textarea>
<input      id="c2" type="text" name="a2” value="val"> 

</form>

<script>
function changer() {

document.getElementById("form").innerHTML = ""; 
CollectGarbage();           // erase  c1 and c2 fields

} 

document.getElementById("c1").onpropertychange = changer; 
document.getElementById("form").reset(); 

</script>

Loop on form elements:
c1.doReset() 
c2.doReset() 

IE11 Example: CVE-2014-0282  (simplified)



vptr

data

object  c2 FP1
FP2
FP3

vtable

doSomething
doReset
doSomethingElse

c1.doReset() causes changer() to be called and free object c2

Use After Free

Freed and marked as available 
for future allocations



vptr

data

object  c2 FP1
FP2
FP3

vtable

c1.doReset() causes changer() to be called and free object c2

What Just Happened?

Suppose attacker allocates an object and gets the 
same memory that was previously occupied by vtable

When c2.doReset() is called, attacker gets shell

ShellCode



<script>
function changer() {

document.getElementById(”form").innerHTML = ""; 
CollectGarbage(); 

--- allocate string object to occupy vtable location ---
} 

document.getElementById("c1").onpropertychange = changer; 
document.getElementById("form").reset(); 

</script>

The Exploit



Chrome Vulnerabilities (2015-2020)



High - CVE-2021-37977 : Use after free in Garbage Collection. Reported by Anonymous on 
2021-09-24
High - CVE-2021-37978 : Heap buffer overflow in Blink. Reported by Yangkang (@dnpushme) of 
360 ATA on 2021-08-04
High - CVE-2021-37979 : Heap buffer overflow in WebRTC. Reported by Marcin Towalski of 
Cisco Talos on 2021-09-07
High - CVE-2021-37980 : Inappropriate implementation in Sandbox. Reported by Yonghwi Jin
(@jinmo123) on 2021-09-30

https://www.forbes.com/sites/gordonkelly/2021/10/09/google-chrome-hack-new-attack-upgrade-chrome-now/

https://crbug.com/1252878
https://crbug.com/1236318
https://crbug.com/1247260
https://crbug.com/1254631


https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html

Last year, we showed that more than 70% of our severe security bugs are memory safety problems.
…
Chrome has been exploring three broad avenues to seize this opportunity:
• Make C++ safer through compile-time checks that pointers are correct.
• Make C++ safer through runtime checks that pointers are correct.
• Investigating use of a memory safe language for parts of our codebase.

In each case, we hope to eliminate a sizable fraction of our exploitable security bugs, but we also expect 
some performance penalty



Doug Lea’s Memory Allocator

The GNU C library and most versions of Linux are based on Doug Lea’s 
malloc (dlmalloc) as the default native version of malloc 

Size or last 4 bytes of prev.

Size
Forward pointer to next
Back pointer to prev.

Unused space

Size

P

Size or last 4 bytes of prev.

Size

User data

Last 4 bytes of user data

P

Allocated chunk Free chunk



Free Chunks in dlmalloc
Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
Unused space

Size

1

Size or last 4 bytes of prev.
Size

Forward pointer to next
Back pointer to prev.

Unused space
Size

1

Size or last 4 bytes of prev.
Size

Forward pointer to next
Back pointer to prev.

:

1

:

:

Forward pointer to first chunk in list 
Back pointer to last chunk in list 

head 
element

Size or last 4 bytes of prev.
Size

Forward pointer to next
Back pointer to prev.

Unused space
Size

1

Size or last 4 bytes of prev.
Size

Forward pointer to next
Back pointer to prev.

Unused space
Size

1

Size or last 4 bytes of prev.
Size

Forward pointer to next
Back pointer to prev.

:

1

:

:

Size or last 4 bytes of prev.
Size

Forward pointer to next
Back pointer to prev.

Unused space
Size

1
Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
Unused space

Size

1

Size or last 4 bytes of prev.
Size

Forward pointer to next
Back pointer to prev.

Unused space
Size

1
Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
Unused space

Size

1

Size or last 4 bytes of prev.
Size

Forward pointer to next
Back pointer to prev.

:

1
Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
:

1

:

:

Forward pointer to first chunk in list 
Back pointer to last chunk in list 

Forward pointer to first chunk in list 
Back pointer to last chunk in list 

head 
element

◦ Organized into circular double-linked 
lists (bins)

◦ Each chunk on a free list contains 
forward and back pointers to the 
next and previous chunks in the list
◦ These pointers in a free chunk occupy 

the same eight bytes of memory as 
user data in an allocated chunk

◦ Chunk size is stored in the last four 
bytes of the free chunk
◦ Enables adjacent free chunks to be 

consolidated to avoid fragmentation 
of memory



Responding to Malloc

◦Best-fit method
◦ An area with m bytes is selected, where m is the smallest available chunk 

of contiguous memory equal to or larger than n (requested allocation)

◦ First-fit method
◦ Returns the first chunk encountered containing n or more bytes

◦Prevention of fragmentation 
◦Memory manager may allocate chunks that are larger than the requested 

size if the space remaining is too small to be useful



The Unlink Macro

#define unlink(P, BK, FD) {

FD = P->fd;

BK = P->bk;

FD->bk = BK;

BK->fd = FD; 

} 

Removes a chunk from a free list  -when?

Hmm… memory copy…
Address of destination read from the free chunk
The value to write also read from the free chunk

What if the allocator is confused
and this chunk has actually 
been allocated…
… and user data written into it?



Size or last 4 bytes of prev.
Size

Forward pointer to next
Back pointer to prev.

Unused space
Size

1
Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
Unused space

Size

1

Size or last 4 bytes of prev.
Size

Forward pointer to next
Back pointer to prev.

Unused space
Size

1
Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
Unused space

Size

1

Size or last 4 bytes of prev.
Size

Forward pointer to next
Back pointer to prev.

:

1
Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
:

1

<-P
:

:

<-BK (2)

<-FD (1)

(4) BK->fd = FD;

(1) FD = P->fd;  

(2) BK = P->bk;  

(3) FD->bk = BK;  

Before 
Unlink

Results 
of Unlink

(4)

(3)

Example of Unlink

What if this area
contained user data?



Double-Free Vulnerabilities

Freeing the same chunk of memory twice, without it being reallocated in 
between

Start with a simple case:
◦ The chunk to be freed is isolated in memory
◦ The bin (double-linked list) into which the chunk will be placed is empty



Forward pointer to first chunk in list 
Back pointer to last chunk in list 

Size of previous chunk, if unallocated
Size of chunk, in bytes

User data
: 

P->

bin->

P

Empty Bin and Allocated Chunk



Forward pointer to first chunk in list 
Back pointer to last chunk in list 

Size of previous chunk, if unallocated
Size of chunk, in bytes

Forward pointer to next chunk in list 
Back pointer to previous chunk in list 
Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After First Call to free()



Forward pointer to first chunk in list 
Back pointer to last chunk in list 

Size of previous chunk, if unallocated
Size of chunk, in bytes

Forward pointer to next chunk in list 
Back pointer to previous chunk in list 
Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After Second Call to free()



Forward pointer to first chunk in list 
Back pointer to last chunk in list 

Size of previous chunk, if unallocated
Size of chunk, in bytes

Forward pointer to next chunk in list 
Back pointer to previous chunk in list 
Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After malloc() Has Been Called

After malloc, user data
will be written here

This chunk is
unlinked from 
free list… how?



Forward pointer to first chunk in list 
Back pointer to last chunk in list 

Size of previous chunk, if unallocated
Size of chunk, in bytes

Forward pointer to next chunk in list 
Back pointer to previous chunk in list 
Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After Another malloc()

After another malloc, 
pointers will be read
from here as if it were 
a free chunk  (why?)

Same chunk will
be returned…
(why?)

One will be interpreted as address,
the other as value   (why?)


