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Cannot Avoid Running Untrusted Code

Programs from untrusted sources
◦Mobile apps, JavaScript…

Applications are exposed to untrusted content
◦ Browsers, PDF viewers, email agents…

Honeypots

Goal: ensure that misbehaving application 
cannot harm the rest of the system

Confinement



Defense in Depth

Any piece of code can be buggy or compromised

Systems need multiple layers of protection

Example: What if there’s a vulnerability in Chrome’s JavaScript interpreter? 
• Chrome should prevent malicious website from accessing other tabs
• OS should prevent access to other processes (e.g., password manager)
• Hardware should prevent permanent malware installation in device firmware
• Network should prevent malware from infecting nearby computers



Confinement at Multiple Levels

Hardware
◦ Run application on isolated machine (air gap)

Virtual machines
◦ Multiple OSes on the same machine, isolated from each other

Process containers
◦ Isolate a process in an OS via system call interposition

Threads
◦ Isolate threads sharing address space via software fault isolation

Application sandboxes Example: browser 
sandbox for JavaScript



Reference Monitor

Observes execution of the program/process and 
mediates its requests
◦ At what level? Instructions, memory accesses, system calls, 

network packets…

Enforces confinement
◦ Halts or confines execution if the program is about to 

violate the security policy

Cannot be circumvented by the monitored process



Principle of Least Privilege

This requires privilege separation: dividing system into 
components, each with limited access

Users and programs should only have access to the data and 
resources needed to perform routine, authorized tasks

“Faculty can only change grades for classes they teach”
“Only employees with background checks have access to classified documents

Compartmentalization is key!



Operating System Basics

◦ Multi-tasking, multi-user OS are now the norm

◦ Kernel mediates between applications and 
resources

◦ Applications consist of one or more processes

◦ Processes have executable program, allocated 
memory, resource descriptors (e.g., file 
descriptors), processor state



Protection Rings
Different parts of system must operate at 
different privilege levels

• Lower number = higher privilege
• Ring 0 is supervisor
• Inherit privileges over higher levels

Intel x86 protection rings

Principle of least privilege:
User account or process should have least privilege level 
required to perform their intended functions

Protection rings included in all typical CPUs 
today and used by most operating systems



Security Policies

Principle of least privilege and privilege separation apply to any 
subject performing an operation on a protected object

Examples of security policies
◦ UNIX: A user should only be able to read their own files
◦ UNIX: A process should not be able to read another process’s memory
◦Mobile: An app should not able to edit other apps’ data
◦Web: A domain should only be able to read its own cookies



Memory Management

What prevents a process from reading 
another process’s memory?



ACLs vs. Capabilities

ACL: system checks where subject is on 
list of users with access to the object.

Capabilities: subject presents an 
unforgeable ticket that grants access 
to an object. System doesn’t care who 
subject is, just that they have access. 

Examples of capability-based systems 
we have seen in this course?



UNIX

Developed at Bell Labs in the early 1970s

Simple, elegant, very influential design

Modern descendants: MacOS and iOS, 
Linux, FreeBSD, Android…

Ken Thompson and Dennis Ritchie

Recipients of 1983 Turing Award



Unix

Subjects (Who) Users, Processes

Objects (What) Memory, Files, Hardware devices … 

Operations Read, write, execute

UNIX Security Model



UNIX Users

Service accounts used to run background 
processes (e.g., web server)

User accounts
◦ Typically tied to a specific human
◦ Every user has a unique integer ID (UID)

Many system operations can only run as root
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Users and Superusers

A user has username, group name, password

Root is an administrator / superuser (UID 0)
◦ Can read and write any file or system resource (network, etc.)
◦ Can modify the operating system
◦ Can become any other user
◦ Execute commands under any other user’s ID

◦ Can the superuser read passwords?

shmat, UID 13630 prof, GID 30 “WouldntchaLikeToKnow”



Access 
Control in 

UNIX

Everything is a file
◦ Files and also sockets, pipes, hardware devices….

◦ Files are laid out in a tree

inode data structure records OS 
management information about the file
◦ UID and GID of the file owner
◦ Type, size, location on disk
◦ Time of last access (atime), last inode

modification (ctime), last file contents 
modification (mtime)

◦ Discretionary ACL via permission bits

Users can set some controls (as 
opposed to mandatory access 
control, set in a central place)



Access rights of everybody else

Access rights of group members

UNIX Permission Bits
-rw-r--r-- 1 shmat prof 116 Sep 5 11:05 midterm.tex

File type
- regular file
d  directory
b  block file
c  character file
l   symbolic link
p  pipe
s   socket

Access rights of file owner

Permission bits
r   read
w  write
x   execute (if directory, traverse it)
s   setuid, setgid (if directory, files have gid of dir owner)
t   sticky bit (if directory, append-only)

Each file has 12 ACL bits:
rwx for each of owner, group, all; set user ID; set group ID; sticky bit 



UNIX Process Permissions

Process (normally) runs with the permissions 
of the user who invoked process

Suppose user wants to change password…
• Need to modify /etc/shadow password file
• /etc/shadow is owned by root
• Can user’s process modify /etc/shadow?
• How does passwd program change user’s password?



Process IDs in UNIX

Each process has three UIDs (similar for GIDs)
◦ Real ID: user who started the process
◦ Effective ID: determines effective access rights of the process
◦ Saved ID: used to swap IDs, gaining or losing privileges

If an executable’s setuid bit is set, it will run with the 
effective privileges of its owner, not the user who started it
◦ Example: when I run lpr to access a printer, real UID is shmat

(13630), effective UID is root (0), saved UID is shmat (13630)

Known as setuid
programs



Setuid Programs

• So passwd is a setuid program runs at permission level of owner, 
not user who invoked it

• setuid bit – execute with privileges of file’s owner
• setgid bit – execute with privileges of file’s group

Least privilege at process granularity: 
passwd runs as root to access /etc/shadow

Can we do better?



Privilege 
Escalation

Privilege escalation: bug that allows 
lower-privilege user to perform 
actions as a higher-privilege user 
(typically, root)

99% of local vulnerabilities in UNIX 
systems exploit setuid-root 
programs to obtain root privileges
◦ The other 1% target the OS itself



Acquiring and Dropping Privilege

◦ To acquire privilege, assign 
privileged UID to effective ID

◦ To drop privilege temporarily, 
remove privileged UID from 
effective ID and store it in saved ID
◦ Can restore it later from saved ID

◦ To drop privilege permanently, 
remove privileged UID from both 
effective and saved ID

Example: 
• Apache Web Server must start as root because 

only root can create a socket that listens on 
port 80 (a privileged port)

• Without privilege reduction, any Apache bug 
would give attacker root access to server

• Instead, Apache creates children like this:
if (fork() == 0) {

int sock = socket(“:80”);
setuid(getuid(“www-data”));

}

Setuid management is tricky and error-prone!



Checking Access Rights

User should only be able to access a file if he has the permission 
to do so

But what if the user is running as setuid-root?
◦ For example, the printing program usually runs with root privileges so it 

can access the printer… but root can read any file!  How does the 
printing program know that the user who invoked it has the right to 
read (and print) a given file?

UNIX has a special access() system call



if( access(“/tmp/myfile”, R_OK) != 0 ) {

exit(-1);

}

file = open( “/tmp/myfile”, “r” );

read( file, buf, 100 );

close( file );

print( “%s\n”, buf );

access() checks RUID, 
but open() only checks EUID

Race Condition

ln –s /etc/shadow /tmp/myfile

Prints out shadow file  
(including password hashes)

Changes the file to which 
the filename points

This is known as a TOCTTOU attack
(“Time of Check To Time of Use”)

This is an example of a concurrency vulnerability

concurrent execution



Summary of UNIX Access Control

◦ Simple model provides 
protection for most situations

◦ Flexible enough to make most 
simple systems possible in 
practice

◦ Coarse-grained ACLs don’t 
account for enterprise complexity

◦ ACLs don’t handle different 
applications within a single user 
account

◦ Nearly all system operations 
require root access — bugs give 
attacker full access



Chrome Architecture Controls “Chrome” part of the application 
(address bar, bookmarks, etc.), handles 
invisible, privileged parts of the browser 
(e.g., network requests)

Controls everything inside the tab 
where a webpage is displayed

Controls any plugins used by website

Handles GPU tasks in isolation from other 
processes.  It is isolated because GPU 
handles requests from multiple apps and 
draws them on the same surface.



Process-Based Website Isolation



Chrome Sandboxing

Broker (main browser) controls/supervises 
activities of the sandboxed processes

Renderer’s only access to the network is via 
its parent browser process; file system 
access is restricted



Restricted Security Context

◦Chrome calls CreateRestrictedToken to create a token that has a 
subset of the user’s privileges 

◦Assigns the token the user and group S-1-0-0 Nobody, removes 
access to nearly every system resource

◦As long as the disk root directories have non-null security, no 
files (even with null ACLs) can be accessed

◦No network access



Physical Machine

Physical hardware
◦ Processors, memory, chipset, I/O devices, etc.

◦ Resources often grossly underutilized

Software
◦ Tightly coupled to physical hardware
◦ Single active OS instance

◦ OS controls hardware



Virtual Machine

Software abstraction
◦ Behaves like hardware

◦ Encapsulates all OS and application state

Virtualization layer
◦ Extra level of indirection
◦ Decouples hardware, OS

◦ Enforces isolation
◦ Multiplexes physical hardware across VMs



Virtualization 
Properties

Isolation of faults and performance

Encapsulation of entire VM state
◦ Enables snapshots and cloning of VMs

Portability
◦ Independent of physical hardware

◦ Enables migration of live, running VMs

Interposition
◦ Transformations on instructions, memory, I/O
◦ Enables transparent resource overcommitment,

encryption, compression, replication …



Virtualization 
Use Cases

Legacy support

Development

Server consolidation

Sandboxing / containment

Cloud computing 
infrastructure-as-a-Service



Studying Malware with VMs

Researchers use VMs to study malware
◦ Example: crawl Web, load pages in a browser running in a 

VM, look for pages that damage VM

Example of VM sandboxing
◦ Hypervisor must confine malicious code

How would you evade analysis as a malware writer?
◦ Split personalities: web page can detect it is running in a VM 

by using timing variations in writing to screen…malware in 
web page becomes benign when in a VM, evades detection

Hardware

OS1

P1 P2

Hypervisor

OS2

P1 P2



HYPERVISOR 
DETECTION

aka “red pill” techniques



Red Pill 
Techniques

VM platforms often emulate simple hardware
◦ VMWare emulates an ancient i440bx chipset… but report 

8GB RAM, dual CPUs, etc.

Hypervisor introduces time latency variances
◦ Memory cache behavior differs in presence of hypervisor
◦ Results in relative time variations for any two operations

Hypervisor shares the TLB with Guest OS
◦ Guest OS can detect reduced TLB size

Many more methods

Garfinkel et al. “Compatibility is Not Transparency: 
VMM Detection Myths and Reality”



Malware can infect guest OS and guest apps

But malware cannot escape from the infected VM

◦ Cannot infect host OS

◦ Cannot infect other VMs on the same hardware 

Requires that hypervisor protect itself and is not buggy

… (some) hypervisors are much simpler than a full OS 

Hypervisor Security Assumption



Violating Confinement

Escape-from-VM
◦ Vulnerability in VMM or host OS (e.g., Dom0)

Memory management flaws in VMM Hardware

OS1

P1 P2

Hypervisor

OS2

P1 P2



Covert channels between VMs circumvent access controls
◦ Bugs in VMM

◦ Side-effects of resource usage

Degradation-of-service attacks
◦ Guests might maliciously contend for resources
◦ Xen scheduler vulnerability

Side channels
Spy on other guest via shared resources

Violating Isolation

Hardware

OS1

P1 P2

Hypervisor

OS2

P1 P2

Much more about this later


