
PROGRAM ANALYSIS
AND FINDING

VULNERABILITIES

VITALY SHMATIKOV

Better Languages

◦ (More) type-safe languages prevent some vulnerabilities by design
◦ “A language is type-safe if the only operations that can be performed on data in the language are

those sanctioned by the type of the data.”

◦ Traditionally less performance

◦ New generation of safer high-performance languages:
◦ Rust (Mozilla), Swift (Apple), Go (Google)

◦ Efforts to improve security of unsafe languages

◦ Safe pointer libraries in C / C++

◦ Coding standards, defensive programming, unit testing

Better Software Engineering

◦ Organize software lifecycle around security

◦ Require use of organizational and software tools to improve security outcomes

◦Microsoft security development lifecycle (SDL):

3

Training Manage risk of third-party components

Design security requirements Use approved tools
Metrics & compliance reporting Static analysis security testing
Threat modeling Dynamic analysis security testing
Establish design requirements Penetration testing
Define & use crypto standards Incident response

https://www.microsoft.com/en-us/securityengineering/sdl/practices

Most Software Very Complex

Linux kernel v4.1: ~19.5 million lines of code, 14,000 contributors

Apache HTTP server: ~1.5 million lines of code, 125 contributors

OpenSSL: 608K lines of code, 572 contributors

Remember Heartbleed?

OpenSSL implements TLS, used in Apache and Nginx

March 2014: researchers discover
vulnerability in the OpenSSL
implementation of TLS heartbeat

[Durumeric et al. 2014]

TLS Heartbeat

C

If you are alive, send me
this 5-letter word: “xyzzy”

“xyzzy”

S

A way to keep TLS connection alive
without constantly transferring data

Per RFC 6520:
struct {
HeartbeatMessageType type;
uint16 payload_length;
opaque payload[HeartbeatMessage.payload_length];
opaque padding[padding_length];
} HeartbeatMessage;

OpenSSL omitted to check
that this value matches the
actual length of the
heartbeat message

Heartbleed

Buffer overread vulnerability
Copy up to almost 216 bytes

of data from memory

Heartbleed Chronology

“I was doing laborious auditing
of OpenSSL, going through the
[Secure Sockets Layer] stack line
by line”

[Durumeric et al. 2014]

Scanning for Heartbleed

Internet scanning to determine vulnerability:
Send heartbeat request with zero length (indicates vulnerable system)

[Durumeric et al. 2014]

Scanning for Heartbleed

Internet scanning to determine vulnerability:
Send heartbeat request with zero length (indicates vulnerable system)

[Durumeric et al. 2014]

Disassembly and Decompiling

Heartbleed discovered by direct inspection of open-source C code

What if you only have the binary?

C
Source
Code

Program
Binary
(ELF)

Normal compilation
process

Program
Binary
(ELF)

What if we start with
binary?

x86
Assembly

Disassembler
(gdb, IDA Pro, OllyDebug)

Disassembly

What type of vulnerability might this be?

main(int argc, char* argv[]) {
char* b1;
char* b2;
char* b3;

if(argc != 3) then return 0;
if(atoi(argv[2]) != 31337)

complicatedFunction();
else {

b1 = (char*)malloc(248);
b2 = (char*)malloc(248);
free(b1);
free(b2);
b3 = (char*)malloc(512);
strncpy(b3, argv[1], 511);
free(b2);
free(b3);

}
}

Exploit can trick heap
management software into
writing adversary-controlled value
to adversary-controlled address

Double-free vulnerability

Disassembly and Decompiling

C
Source
Code

Program
Binary
(ELF)

Normal compilation
process

Program
Binary
(ELF)

What if we start with
binary?

x86
Assembly

Disassembler
(gdb, IDA Pro, OllyDebug)

C
Source
Code

Decompiler
(IDA Pro has one)

Very complex, usually
poor results

Decompilation

Packing

Packing hides the real code of a
program through one or more layers
of compression/encryption

At run-time the unpacking routine
restores the original code in memory
and then executes it

Vulnerability Discovery

Experienced analysts (according to Aitel)…

◦ 1 hour of binary analysis:
◦ Simple backdoors, coding style, bad API calls (strcpy)

◦ 1 week of binary analysis:
◦ Likely to find 1 good vulnerability

◦ 1 month of binary analysis:
◦ Likely to find 1 vulnerability no one else will ever find

http://www.immunityinc.com/downloads/DaveAitel_TheHackerStrategy.pdf

How to Find Vulnerabilities?

Manual analysis
◦ Source code review

◦ Reverse engineering

Program analysis tools:
◦ Static analysis
◦ Fuzzing

◦ Symbolic analysis

Program Analyzers

Code Report Type Line

1 mem leak 324

2 buffer oflow 4,353,245

3 sql injection 23,212

4 stack oflow 86,923

5 dang ptr 8,491

… … …

10,502 info leak 10,921

Program
Analyzer

Spec

potentially
reports many
warnings

may emit
false alarms

analyze
large
code bases

false alarm

false alarm

Term Definition
False positive A spurious warning that does not

indicate an actual vulnerability
False negative Does not emit a warning for an actual

vulnerability

Complete analysis: no false negatives
Sound analysis: no false positives

False Positives and False Negatives

Complete Incomplete

So
un

d
U
ns
ou

nd

Reports all errors
Reports no false alarms

Reports all errors
May report false alarms

Undecidable Decidable

Decidable

May not report all errors
May report false alarms

Decidable

May not report all errors
Reports no false alarms

No false positives
No false negatives

No false negatives
False positives

False positives
No false negatives

False negatives
False positives

Soundness and Completeness

Example Tools

Static analysis

Approach Type Comment
Lexical analyzers Static analysis Perform syntactic checks

Ex: LINT, RATS, ITS4
Fuzz testing Dynamic analysis Run on specially crafted inputs

to test
Symbolic execution Emulated execution Run program on many inputs at

once

Ex: KLEE, S2E, FiE
Model checking Static analysis Abstract program to a model,

check that model satisfies
security properties

Ex: MOPS, SLAM, etc.

Program that looks at source code, flags suspicious constructs

…
strcpy(ptr1, ptr2);
…

Warning: Don’t use strcpy

Simplest example: grep
Lint is early example
RATS (Rough auditing tool for security)
ITS4 (It’s the Software Stupid Security Scanner)

Circa 1990’s technology, shouldn’t work for reasonable modern codebases

(… but probably will)

Source Code Scanners

Taint Checkers

“The term first originates from a class project at the
University of Wisconsin 1988 although similar
techniques have been used in the field of quality
assurance, where they are referred to as robustness
testing, syntax testing or negative testing.”

http://en.wikipedia.org/wiki/Fuzz_testing

Choose a bunch of inputs
See if they cause program to crash

Key challenge: finding good inputs

Dynamic Analysis: Fuzzing

Program
Normal
input output(s)

Program
Mutated

input output(s)

Program
Mutated
input 2 Program crash

Fuzzing

HTTP Fuzzing Example

Standard HTTP GET request
◦ GET /index.html HTTP/1.1

Anomalous requests
◦ GEEEE…EET /index.html HTTP/1.1

◦ GET ///////index.html HTTP/1.1

◦ GET %n%n%n%n%n%n.html HTTP/1.1

◦ GET /AAAAAAAAAAAAAAAAAAAAAAAA.html HTTP/1.1
◦ GET /index.html HTTTTTTTTTTTTTP/1.1

◦ GET /index.html HTTP/1.1.1.1.1.1.1.1

but not df%w3rasd8#r78jskdflasdjf (why?)

Problem with Random Fuzzing

TLS 1.3 state diagram

Program
argv[1]=“AAAA”
argv[2]=1 output(s)

Program
argv[1] = random str
argv[2] = random 32-bit int output(s)

Achieving code coverage can
be very difficult

main(int argc, char* argv[]) {
char* b1;
char* b2;
char* b3;

if(argc != 3) then return 0;
if(atoi(argv[2]) != 31337)

complicatedFunction();
else {

b1 = (char*)malloc(248);
b2 = (char*)malloc(248);
free(b1);
free(b2);
b3 = (char*)malloc(512);
strncpy(b3, argv[1], 511);
free(b2);
free(b3);

}
}

If integers are 32 bits, then probability
of crashing is at most what? 1/232

Fuzzing

Code Coverage and Fuzzing Techniques

Code coverage defined in many ways
◦ # of basic blocks reached

◦ # of paths followed
◦ # of conditionals followed

◦ gcov is useful standard tool

Mutation-based: start with known good examples, mutate them
◦ Heuristics: increase string lengths (AAAAAAAAA…), randomly change items

Generative: start with specification of protocol, file format
◦ Build test case files from the spec, especially rarely used parts

Generation Example

Mutation vs. Generation

Ease of Use Knowledge Completeness Complex
Programs

Mutation Easy to setup
and automate

Little to no
protocol

knowledge
required

Limited by
initial corpus

May fail for
protocols with
checksums or

other complexity

Generative Writing generator
is labor intensive

Requires having
protocol

specification
More complete
than mutations

Handles
arbitrarily compl

ex protocols

Evolutionary Fuzzing

Generate inputs based on the structure and response of the program

Autodafe: Prioritizes based on inputs that reach dangerous API functions

EFS: Generates test cases based on code coverage metrics

Typically instrument program with additional instructions to track what code
has been reached — or, if no source is available, track with Valgrind.

Widely used, highly effective fuzzing tool
• Specify example inputs
• Compile program with special afl compiler
• Run it

Performs mutation-based fuzzing
• Deterministic transforms to input (flip each bit,

“walking byte flips”, etc.)
• Randomized stacked transforms
• Measure (approximation of) path coverage, keep

and mutate set of files that increase coverage

Really fast and simple. Used to find bugs in
Firefox, OpenSSH, BIND, ImageMagick, iOS, …

American Fuzzy Lop (AFL)

https://lcamtuf.blogspot.com/2014/11/
pulling-jpegs-out-of-thin-air.html

Does This Program Crash?

No!

Does This Program Crash?

Does not terminate…

Analysis With Concrete Values

Abstract From Concrete Values

Concrete domain of integers Abstract domain of signs

x=5

x=-5

x=0

x=b ? -1 : 1

x=y / 0

Positive integers
Negative integers

Zero
Integers
No integers (undefined)

Abstraction

With “Signs” Approximation

Add Path Sensitivity

Source Code

LLVM
bytecode

Symbolic Executor
(e.g., KLEE)

Environment
spec

Clang

Bug found
Input that gets to
that bug

Source to
intermediate
representation

Emulate
execution
symbolically

◦ Technique for analyzing code paths and finding
inputs

◦ Associate symbols to input variables (“symbolic
variable”)

◦ Simulate execution symbolically
◦ Update symbolic variable’s value appropriately

◦ Conditionals add constraints on possible values

◦ Cast constraints as satisfiability, use SAT solver to
find inputs

◦ Perform security checks at each execution state

Symbolic Execution

main(int argc, char* argv[]) {
char* b1;
char* b2;
char* b3;

if(argc != 3) then return 0;
if(argv[2] != 31337)

complicatedFunction();
else {

b1 = (char*)malloc(248);
b2 = (char*)malloc(248);
free(b1);
free(b2);
b3 = (char*)malloc(512);
strncpy(b3, argv[1], 511);
free(b2);
free(b3);

}
}

argc = x (unconstrained int)
argv[2] = z (memory array)

Initially:

x = 3?

z = 31337? finished

x != 3x = 3

x = 3 ^
z = 31337

Continue in
basic block

Continue in
complicatedFunction()

x = 3 ^
z != 31337

- Eventually emulation hits a double free
- Can trace back up path to determine what x, z
must have been to hit this basic block

Symbolic Execution

Symbolic Execution Challenges

Is it possible to complete analyses?
◦ Yes, but only for very simple programs

◦ Exponential number of paths to explore
◦ Each branch increases state size of symbolic emulator

Path selection
◦ Which state to explore next?

◦ Might get stuck in complicatedFunction()

Encoding checks on symbolic states
◦ Must include logic for double free check
◦ Symbolic execution on binary more challenging (lose most memory semantics)

Example Tools
Approach Type Comment
Lexical analyzers Static analysis Perform syntactic checks

Ex: LINT, RATS, ITS4
Fuzz testing Dynamic analysis Run on specially crafted inputs

to test
Symbolic execution Emulated execution Run program on many inputs at

once, by

Ex: KLEE, S2E, FiE
Model checking Static analysis Abstract program to a model,

check that model satisfies
security properties

Ex: MOPS, SLAM, etc.

Google Address Sanitizer (ASan)

Memory error detector for C/C++ that finds…
◦ Use after free (dangling pointer dereference)

◦ Heap buffer overflow
◦ Stack buffer overflow

◦ Global buffer overflow
◦ Use after return
◦ Use after scope

◦ Initialization order bugs
◦ Memory leaks

Google Address Sanitizer (ASan)

LLVM Pass
◦ Modifies the code to check the shadow state for each memory access and creates

poisoned redzones around stack and global objects to detect overflows and underflows

A run-time library that replaces memory management functions
◦ Replaces malloc, free and related functions, creates poisoned redzones around allocated

heap regions, delays the reuse of freed heap regions, and does error reporting

Google Address Sanitizer (ASan)
==9901==ERROR: AddressSanitizer: heap-use-after-free on address 0x60700000dfb5 at pc
0x45917b bp 0x7fff4490c700 sp 0x7fff4490c6f8
READ of size 1 at 0x60700000dfb5 thread T0

#0 0x45917a in main use-after-free.c:5
#1 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226
#2 0x459074 in _start (a.out+0x459074)

0x60700000dfb5 is located 5 bytes inside of 80-byte region [0x60700000dfb0,0x60700000e000)
freed by thread T0 here:

#0 0x4441ee in __interceptor_free projects/compiler-rt/lib/asan/asan_malloc_linux.cc:64
#1 0x45914a in main use-after-free.c:4
#2 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226

previously allocated by thread T0 here:
#0 0x44436e in __interceptor_malloc projects/compiler-rt/lib/asan/asan_malloc_linux.cc:74
#1 0x45913f in main use-after-free.c:3
#2 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226

SUMMARY: AddressSanitizer: heap-use-after-free use-after-free.c:5 main

Summary of Program Analysis

Pros Cons

Static
Enables quickly finding bugs

at development time
Can detect some problems

that dynamic misses

Either over or under reports.
Misses complex bugs.

Generally requires code.

Dynamic
May uncover complex

behavior missed by static.
Can run on blackbox.

Depends on user input—
only checks executed code

Bug Finding is a Big Business

◦ Grammatech (Cornell startup, 1988)

◦ Coverity (Stanford startup)

◦ Fortify

… many, many others

◦ Also reverse engineers, exploit developers, zero-day markets…

