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Step 1: 
Key exchange protocol 
to share secret K

Step 2:
Send data via
secure channel

TLS uses many cryptographic primitives:
key exchange: hash functions, digital signatures, public-key encryption
secure channel: symmetric encryption, message authentication + integrity

Mechanisms to resist replay attacks, man-in-the-middle attacks, truncation attacks, etc…

Online Shopping with HTTPS (HTTP over TLS)



?
---------------

Given: both parties already know the same secret

Goal: send a message confidentially

Any communication system that aims to guarantee
confidentiality must solve this problem

Goal: Confidentiality

How is this achieved 
in practice?



Kerckhoffs's Principle

An encryption scheme should be secure even if 
enemy knows everything about it except the key
◦ Attacker knows all algorithms

◦ Attacker does not know random numbers

Do not rely on secrecy of the algorithms 
(“security by obscurity”)

Easy lesson:
use a good random 
number generator!

Jean-Guillaume-Hubert-Victor-
François-Alexandre-Auguste 
Kerckhoffs von Nieuwenhof



Symmetric encryption

Enc Dec

Kg

key generation

Rk

K

Rm

M
C C M or 

error

Handled
in TLS key
exchange

R = fresh 
random bits

C is a ciphertext

Correctness: Dec(K, Enc(K,R,M)) = M with probability 1 over randomness R used

Kerckhoffs’ principle: which parts are public and which are secret?

Optional

Where do these
come from?



Randomness Matters!



WW2 German Enigma machine
◦ Polyalphabetic substitution cipher 
◦ Substitution table changes from 

character to character
◦ Rotors control substitutions

Allies broke Enigma (even before 
the war), significant intelligence 
impact

Computers were built to break 
WW2 ciphers, by Alan Turing 
and others



One-Time Pad (Vernam Cipher)

= 10111101…
-----
-----
-----

= 00110010…
10001111…Å

00110010… =
Å

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext Å key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext Å key = 
(plaintext Å key) Å key =
plaintext Å (key Å key) =
plaintext 

Cipher achieves perfect secrecy if and only if there are as many possible keys as 
possible plaintexts, and every key is equally likely   (Claude Shannon, 1949)



Advantages of 
One-Time Pad

• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

Easy to compute

Given a ciphertext, all plaintexts are equally likely,
regardless of attacker’s computational resources,
if and only if the key sequence is truly random

• True randomness is expensive to obtain in large quantities
if and only if each key is as long as the plaintext

• But how do the sender and the receiver communicate the 
key to each other?  Where do they store the key?

As secure as theoretically possible



Problems with 
One-Time Pad

Key must be as long as the plaintext
◦ Impractical in most realistic scenarios

◦ Still used for diplomatic and intelligence traffic

Does not guarantee integrity
◦ One-time pad only guarantees confidentiality
◦ Attacker cannot recover plaintext, but can 

easily change it to something else

Insecure if keys are reused
◦ Attacker can obtain XOR of plaintexts

No integrity



No Integrity

= 10111101…
-----
-----
-----

= 00110010…
10001111…Å

00110010… =
Å

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext Å key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext Å key = 
(plaintext Å key) Å key =
plaintext Å (key Å key) =
plaintext 

0

0



Dangers of Key Reuse

= 0000000…
-----
-----
-----

= 00110010…
00110010…Å

00110010… =
Å

00000000…P1=
C1=

= 1111111111…
-----
-----
-----

= 00110010…
11001101…Å

P2=
C2=

Eavesdropper learns a relationship between plaintexts
C1ÅC2 = (P1ÅK)Å(P2ÅK) = (P1ÅP2)Å(KÅK) = P1ÅP2



Need Small, Reusable Keys

◦ Use special cryptographic primitives: stream ciphers, block ciphers

◦ Single key can be re-used (with some restrictions)

◦ Not as theoretically secure as one-time pad



Stream Ciphers

One-time pad: Ciphertext(Key,Message)=MessageÅKey
◦ Key must be a random bit sequence as long as the message

Idea: replace “random” with “pseudo-random”
◦ Use a pseudo-random number generator (PRNG)
◦ PRNG takes a short, truly random secret seed and expands it 

into a long “random-looking” sequence
◦ E.g., 128-bit seed into a 106-bit  pseudo-random sequence

Ciphertext(Key,Msg)=IV, MsgÅPRNG(IV,Key)
◦ Message processed bit by bit (unlike block cipher)

No efficient algorithm can tell
this sequence from truly random



Stream Cipher 
Terminology

The seed of a pseudo-random generator typically 
consists of initialization vector (IV) and key 
◦ The key is a secret known only to the sender and the 

recipient, not sent with the ciphertext
◦ IV is usually sent with the ciphertext

The pseudo-random bit stream produced by 
PRNG(IV,key) is referred to as the keystream

Encrypt message by XORing with keystream:
ciphertext = message Å keystream



Properties of 
Stream 
Ciphers

Usually very fast (faster than block ciphers)
◦ Used where speed is important: WiFi, DVD, RFID, VoIP

Unlike one-time pad, stream ciphers do not
provide perfect secrecy
◦ Only as secure as the underlying PRNG

◦ If used properly, can be as secure as block ciphers

PRNG must be cryptographically secure



How Random is “Random”?



Cryptographically Secure PRNG

Common PRNGs are not cryptographically secure
◦ Example: LFSR generator in DVD Content Scrambling 

System, broken in the early 2000s

RC4
◦ Popular stream cipher from Ron Rivest, many weaknesses, 

not recommended anymore

Many modern alternatives
◦ For example, CTR modes of block ciphers such as AES

Jon Lech Johansen 
(“DVD Jon”)



Using Stream 
Ciphers

No integrity
◦ Associativity & commutativity:

(M1ÅPRNG(seed)) Å M2 = (M1ÅM2) Å PRNG(seed)
◦ Need an additional integrity protection mechanism 

Known-plaintext attack is very dangerous if 
keystream is ever repeated
◦ Self-cancellation property of XOR: XÅX=0
◦ (M1ÅPRNG(seed)) Å (M2ÅPRNG(seed)) = M1ÅM2

◦ If attacker knows M1, then easily recovers M2 … also, 
most plaintexts contain enough redundancy that 
can recover parts of both messages from M1ÅM2



Case Study: WEP (Wired Equivalent Privacy)

Original Wi-Fi encryption in the 802.11b standard

Goals: confidentiality, integrity, authentication
◦ Intended to make wireless as secure as wired network

Assumes that a secret key is shared between access point and client

Uses RC4 stream cipher seeded with 24-bit initialization vector and 
40-bit key

Terrible design choice for wireless environment



beacon

Prior to communicating data, access point may require client to authenticate

Access Point Client

association 
request

association 
response

probe request
OR

challenge

IV, challengeÅRC4(IV,K)

unauthenticated &
unassociated

authenticated &
unassociated

authenticated &
associated

Passive eavesdropper recovers RC4(IV,K), 
can respond to any subsequent challenge 
without knowing K

Shared Key Authentication



How WEP Works

24 bits 40 bits

(IV, shared key) used as RC4 seed
Must never be repeated (why?)
There is no key update protocol, so 
security relies on never repeating IV

IV sent in the clear
Worse: changing IV with 
each packet is optional!

CRC-32 checksum is linear in Å: 
if attacker flips some plaintext bits, he knows which
bits of CRC to flip to produce the same checksum

no integrity!



RC4 Was a 
Bad Choice 
for Wireless

Stream ciphers require sender and receiver to be 
at the same place in the keystream
◦ Not suitable when packet losses are common

WEP solution: a separate keystream for each 
packet (requires a separate seed for each packet)
◦ Can decrypt a packet even if a previous packet was lost

But there aren’t enough possible seeds!
◦ RC4 seed = 24-bit initialization vector + fixed key
◦ Assuming 1500-byte packets at 11 Mbps, 

224 possible IVs will be exhausted in about 5 hours

Seed reuse is deadly for stream ciphers



Recovering the Keystream

Get access point to encrypt a known plaintext M
• Send spam, AP will encrypt and forward
• Get victim to send an email with known content

Recover keystream:
C Å M = (MÅRC4(IV,key)) Å M = RC4(IV,key)

Plaintexts are not random (for example, 
IP packet structure is very regular). 
Even without knowing the plaintext, can 
exploit plaintext regularities to recover 
partial keystream.

Not a problem if 
the keystream is 
never re-used!



Keystream Will Be Re-Used

In WEP, repeated IV = repeated keystream

Busy network will repeat IVs often
• Many cards reset IV to 0 when re-booted, then 

increment by 1 Þ expect re-use of low-value IVs
• If IVs are chosen randomly, expect repetition in 

O(212) due to birthday paradox

Recover keystream for each IV, store in table:
(KnownMÅ RC4(IV,key)) Å KnownM = RC4(IV,key)

Wait for IV to repeat, decrypt, enjoy plaintext:
(M’Å RC4(IV,key)) Å RC4(IV,key) = M’



It Gets Worse

Misuse of RC4 in WEP is a design flaw with no fix
◦ Longer keys do not help! The problem is re-use of IVs, 

their size is fixed (24 bits)
◦ Attacks are passive and very difficult to detect

Perfect target for the Fluhrer et al. attack on RC4
◦ Attack requires known IVs of a special form

◦ WEP sends IVs in plaintext
◦ Generating IVs as counters or random numbers will 

produce enough “special” IVs in a matter of hours

This results in key recovery (not just keystream)
◦ Can decrypt even ciphertexts whose IV is unique



Fix in 802.11i

Patch (TKIP): still RC4, but encrypts IVs and 
establishes new shared keys for every 10 
KBytes transmitted
◦ Use same network card, only upgrade firmware
◦ Deprecated by the Wi-Fi alliance 

Long-term: AES in CCMP mode, 128-bit keys, 
48-bit IVs
◦ Block cipher in a stream cipher-like mode



Many Stream Cipher Attacks Over the Years

A5/1 GSM cipher

MIFARE cards

Kindle DRM



Block Ciphers

Operates on a single chunk (“block”) of plaintext
◦ For example, 64 bits for DES, 128 bits for AES

◦ Same key is reused for each block (can use short keys)

Result should look like a random permutation

Not impossible to break, just very expensive
◦ If there is no more efficient algorithm (unproven 

assumption!), can only break the cipher by brute-force, 
try-every-possible-key search

◦ Time and cost of breaking the cipher exceed the value 
and/or useful lifetime of protected information



A Bit of Block Cipher History

Playfair and variants (from 1854 until WW2)

Feistel structure
◦ “Ladder” structure: split input in half, put one half through the 

round and XOR with the other half… after 3 random rounds, 
ciphertext indistinguishable from a random permutation

DES: Data Encryption Standard
◦ Invented by IBM, issued as federal standard in 1977
◦ 64-bit blocks, 56-bit key + 8 bits for parity

◦ Very widely used (usually as 3DES) until recently
◦ 3DES: DES + inverse DES + DES (with 2 or 3 different keys)



Best Attacks Against DES

Attack Attack type Complexity Year

Biham, Shamir Chosen plaintexts, recovers key 247 plaintext, ciphertext pairs 1992

Matsui Known plaintext, ciphertext pairs, 
recovers key

242 plaintext, ciphertext pairs,
~241 DES computations

1993

DESCHALL Unknown plaintext, recovers key 256/4 DES computations
41 days

1997

EFF Deep Crack Unknown plaintext, recovers key ~4.5 days 1998

Deep Crack + 
DESCHALL

Unknown plaintext, recovers key 22 hours 1999

EFF’s custom machine 
with “Deep Crack” chips



Advanced 
Encryption 

Standard 
(AES)

US federal standard as of 2001

Based on the Rijndael algorithm

128-bit blocks, keys can be 128, 192 or 256 bits

Design uses some clever math

Take a cryptography 
course to learn more!



AES in Hardware

x86 instructions implementing AES
◦ aesenc, aesenclast: one round of AES encryption

◦ aesdec, aesdeclast: one round of AES decryption
◦ aeskeygenassist: AES key expansion

10x faster than AES in software

All AES instructions execute in constant time

why is this important?



Encrypting a Large Message

So, we’ve got a good block cipher, but our 
message is longer than 128 bits…



Electronic Code Book (ECB) Mode

◦ Identical blocks of plaintext produce identical blocks of ciphertext

◦ No integrity checks: can mix and match blocks

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key key key key key



Encrypt in ECB mode

ECB Mode Leaks Information!



Remember Adobe Passwords Leak?

◦ 153 million account passwords 
leaked in 2013

◦ Encrypted using 3DES in ECB 
mode rather than hashed



Sent with ciphertext
(preferably encrypted)

Cipherblock Chaining (CBC) Mode: Encryption

◦ Identical blocks of plaintext encrypted differently
◦ Last cipherblock depends on entire plaintext

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

Å Å Å Åkey key key key

Still does not 
guarantee integrity…

Initialization
vector



CBC Mode: Decryption
plaintext

ciphertext

decrypt decrypt decrypt decrypt

ÅInitialization
vector Å Å Åkey key key key



ECB vs. CBC

AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

Picture credit: Bart Preneel



Choosing the Initialization Vector

Key used only once

No IV needed (can use IV=0)

Key used multiple times

• Best: fresh, random IV for 
every message

• Can use unique IV (eg, 
counter), but then the 
first step in CBC mode 
must be IV’ ¬ E(k, IV)
• Example: Windows 

BitLocker
• May not need to transmit 

IV with the ciphertext

Key used multiple times, 
unique messages

• Synthetic IV: IV ¬ F(k’, message)
• F is a cryptographically secure 

keyed pseudorandom function



CBC and Electronic Voting

Initialization
vector
(supposed to
be random)

plaintext

ciphertext

DES DES DES DES

Å Å Å Å

Found in the source code for Diebold voting machines:
DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,

totalSize, DESKEY, NULL, DES_ENCRYPT)

key key key key

Kohno, Stubblefield, Rubin, Wallach



CTR (Counter Mode)
Still does not guarantee integrity

Fragile if counter repeats

plaintext

ciphertext

Å

Random IV

IV

key key

Å Enc(IV+2) Å
key

Enc(IV+1)Enc(IV) Enc(IV+3) Å
key



C0, C1, C2
ok

error

Dec(K,C’ )
M1’||M2’||P’ = CBC-Dec(K,C’)
If P’ ≠ 0x00 then 

Return error
Else 

Return ok
C0, C1    1, C2

EK EK

M2||PM1

C2C1

IV

P is one byte of padding
that must equal 0x00

Assume that
M1||M2 has length 2n-8 bits

Adversary obtains 
ciphertext C0,C1,C2

Checking If CBC Ciphertext Decrypted Correctly

C0



R, C0, C1
error

error

Dec(K,C’ )
M1’||M2’||P’ = CBC-Dec(K,C’)
If P’ ≠ 0x00 then 

Return error
Else 

Return ok

R, C0    1, C1

EK EK

M2||PM1

C2C1

IV

P is one byte of padding
that must equal 0x00

Assume that
M1||M2 has length 2n-8 bits

Adversary obtains 
ciphertext C0,C1,C2

Let R be arbitrary bits

Padding Oracle Attack on CBC Decryption

C0

…

ok!
R, C0    i, C1



Dec(K,C’ )
M1’||M2’||P’ = CBC-Dec(K,C’)
If P’ ≠ 0x00 then 

Return error
Else 

Return ok

EK EK

….

C1C0   i

High-Level Intuition

ok!
R, C0    i, C1

X

Known to 
attacker

= Unknown plaintext ⊕ known value

Decryption succeeded, therefore 
last byte = known padding value

Learning last byte of this sum = 
learning last byte of unknown plaintext



Dec(K,C’ )
M1’||M2’||P’ = CBC-Dec(K,C’)
If P’ ≠ 0x00 then 

Return error
Else 

Return ok

EK EK

….

C1C0   i

….

Adversary obtains 
ciphertext C0,C1,C2

Let R be arbitrary bits

Adversary’s Analysis

R

ok!
R, C0    i, C1

EK EK

M2||00M1

C2C1

IV

C0 EK (M1   C0)

M1   C0

M1   C0   C0   i = M1    i Last byte of this value 
must be 00 (why?)

Therefore, last byte 
of M1 is i

X



Padding for CBC Mode in TLS

C0 C1 C2

Possible paddings in TLS: 00, 01 01, 02 02 02, etc.

Random IV

EK EK

Message Padding

00



Padding for CBC Mode in TLS

C0 C1 C2 C3

EK EK EK

“Lengths longer than necessary might be desirable to frustrate attacks on a 
protocol that are based on analysis of the lengths of exchanged messages.”

RFC 5246             

11 11 11 11…

Possible paddings in TLS: 00, 01 01, 02 02 02, etc.

Random IV

Message Padding

These are called 
“traffic analysis” 
attacks



Dec(K,C’ )
M1’ = CBC-Dec(K,C’)
(X,plen) <- lastbyte(M1’)
For i = 0 to padlen do

(X,plen’) <- lastbyte(X)
If plen’ != plen return Error

Return Ok

EK EK

M2||PM1

C2C1

IV Goal:
decrypt entire plaintext

C0

error
00…00, C1

error
00...01, C1

…

ok
00… i, C1

We know that:
00 = i ⊕ IV[n] ⊕ M1[n]

Or do we? Could be:
01 = i ⊕ IV[n] ⊕ M1[n]
01 = IV[n-1] ⊕ M1[n-1]

Easy to exclude other cases

Vaudenay’s Padding Oracle Attack



Dec(K,C’ )
M1’ = CBC-Dec(K,C’)
(X,plen) <- lastbyte(M1’)
For i = 0 to padlen do

(X,plen’) <- lastbyte(X)
If plen’ != plen return Error

Return Ok

EK

M1

C1

IV

C0

Vaudenay’s Padding Oracle Attack

EK

M1’
IV+M1

00… i j C1

We know M1[n]. Let’s 
get second to last byte.

Solve j to make M1’[n] = 01
01 = j ⊕ IV[n] ⊕ M1[n]

Know that:
01 = i ⊕ IV[n-1] ⊕ M1[n-1]
Repeat for all n bytes

error
00…00 j, C1

error
00...01 j, C1

…

ok
00… i j, C1

Pick j to ensure last padding byte is correct

Attack 
second-to-
last byte



Attack Description Year

Vaudenay 10’s of chosen ciphertexts, recovers message bits 
from a ciphertext. Called “padding oracle attack”

2001

Canvel et al. Shows how to use Vaudenay’s ideas against TLS 2003

Degabriele, Paterson Breaks IPsec encryption-only mode 2006

Albrecht et al. Plaintext recovery against SSH 2009

Duong, Rizzo Breaks ASP.net encryption 2011

Jager, Somorovsky XML encryption standard 2011

Duong, Rizzo “Beast” attacks against TLS 2011

Chosen-Ciphertext Attacks on CBC

Means what?



Compress, then Encrypt?

POST /bank.com/buy?id=aapl
Cookie: uid=jhPL8g69684rksfsdg

POST /bank.com/buy?id=goog
Cookie: uid=jhPL8g69684rksfsdg

Second message compresses better than first:
network observer can see the difference in ciphertext sizes



The CRIME Attack (Simplified)

Rizzo, Duong 2012

POST /bank.com/buy?id=aapl
Cookie: uid=jhPL8g69684rksfsdg

Malicious JavaScript can issue requests 
to the bank’s website…
… but cannot read the cookie value



The CRIME Attack (Simplified)

Rizzo, Duong 2012

POST /bank.com/buy?id=uid=a
Cookie: uid=jhPL8g69684rksfsdg

Observe ciphertext size



The CRIME Attack (Simplified)

Rizzo, Duong 2012

POST /bank.com/buy?id=uid=b
Cookie: uid=jhPL8g69684rksfsdg

Observe ciphertext size



The CRIME Attack (Simplified)

Rizzo, Duong 2012

POST /bank.com/buy?id=uid=j
Cookie: uid=jhPL8g69684rksfsdg

Ciphertext slightly shorter!  (due to compression)
First character of cookie is “j”

Observe ciphertext size



The CRIME Attack (Simplified)

Rizzo, Duong 2012

POST /bank.com/buy?id=uid=ja
Cookie: uid=jhPL8g69684rksfsdg

Observe ciphertext size



The CRIME Attack (Simplified)

Rizzo, Duong 2012

POST /bank.com/buy?id=uid=jh
Cookie: uid=jhPL8g69684rksfsdg

Ciphertext slightly shorter!  (due to compression)
Second character of cookie is “h”

Observe ciphertext size

Recover entire cookie after 256 x |cookie| tries (in minutes)



Solutions

◦ Disable compression

◦ Use a different compression context for parts 
under JavaScript control and parts that are not

◦ Change the cookie after every request

😬

Does not eliminate leakage 
due to compression

Does not eliminate leakage 
due to compression



• What if attacker learns only some bits of the plaintext? Some 
function of the bits? Some partial information about the 
plaintext?

Hard to recover 
plaintext from 

ciphertext?

• What if attacker sees two identical ciphertexts and infers that 
the corresponding plaintexts are identical?

• What if attacker guesses the plaintext – can he verify his guess?
• Implication: encryption must be randomized or stateful

Fixed mapping 
from plaintexts to 

ciphertexts?

When Is an Encryption Scheme “Secure”?



How Can a System Be Attacked?

Attackers knows the ciphertext and the encryption algorithm
◦ What else does the attacker know? Depends on the application!

Known-plaintext attack (stronger)
◦ Attacker knows some plaintext-ciphertext pairs

Chosen-plaintext attack (even stronger)
◦ Attacker can obtain ciphertext for any plaintext of his choice

Chosen-ciphertext attack (very strong)
◦ Attacker can decrypt any ciphertext except the target
◦ Sometimes very realistic



Known-Plaintext Attack

Extracting password from an encrypted PKZIP file …

“… I opened the ZIP file and found a `logo.tif’ file, so I went to their main Web 
site and looked at all the files named `logo.tif.’ I downloaded them and 
zipped them all up and found one that matched the same checksum as the 
one in the protected ZIP file”

With known plaintext, PkCrack took 5 minutes to extract the key
◦ Biham-Kocher attack on PKZIP stream cipher 

From Kevin Mitnick’s “The Art of Intrusion”



Very Informal Intuition

◦ Security against chosen-plaintext attack
◦ Ciphertext leaks no information about the plaintext

◦ Even if the attacker correctly guesses the plaintext, he cannot verify his guess
◦ Every ciphertext is unique, encrypting same message twice produces completely 

different ciphertexts

◦ Security against chosen-ciphertext attack
◦ Integrity protection – it is not possible to change the plaintext by modifying the 

ciphertext

Minimum security 
requirement for any 
modern encryption scheme

Simple exercise: show that ECB mode is not secure



https://amazon.com

K K

Enc(K, “Quantity: 100 , 
CC#:  5415431230123456”)

Something’s fishy…
I’ll discard this.

Goal: Hide message (confidentiality) and detect tampering (integrity)

Can build by combining encryption with message authentication scheme

Authenticated Encryption

10000000



Message Authentication

Tag Ver

Kg

key generation

Rk

K

R
Msg

T
T

0 or 1

Optional. If no randomness, 
then called Message 
Authentication Code (MAC)

Msg



Receiver

Msg, T

Sender
KK

Two algorithms: 
Tag(K,Msg) outputs a tag T
Verify(K,Msg,T) outputs 0/1  (invalid / valid)

Security: No computationally efficient attacker can forge tags for a new 
message even when attacker gets 

(Msg1 , T1) , (Msg2, T2), … , (Msgq , Tq) 
for messages of his choosing and reasonably large q 

Message Authentication



Kgen outputs uniform bit string K

HK     ipad || M

TK      opad || h  H

ipad != opad are constants

To verify a M,T pair, check if HMAC(K,M) = T 

Tag(K,M) = HMAC(K,M) defined by:

Unforgeability holds if hash function H behaves like a random function

Message Authentication with HMAC



Goal: confidentiality + integrity + authentication

Alice Bob

K1, K2
K1, K2

msg

MAC=HMAC(K2,msg)

encrypt(msg), MAC(msg)

=
?

Encrypt(K1,msg)

Decrypt

Verify MAC

encrypt(msg2), MAC(msg2)

Can tell if messages
are the same!

MAC is deterministic: messages are equal Þ their MACs are equal
Solution: Encrypt, then MAC  (IPsec, TLS 1.3)    

MAC, then encrypt  (SSL)

Breaks chosen-
plaintext security

Encrypt + MAC



Attack Inventor(s) Notes

OCB  (Offset Codebook) Rogaway One-pass mode and fastest

AES-GCM 
(Galois Counter Mode)

McGrew, Viega CTR mode plus Carter-Wegman MAC

ChaCha20/Poly1305 Bernstein “essentially” CTR mode plus special Carter-
Wegman MAC

CCM Housley, Ferguson, Whiting CTR mode plus CBC-MAC

EAX Wagner, Bellare, Rogaway CTR mode plus OMAC 

Other considerations in authenticated encryption (AE):   
robustness & IV misuse, deterministic AE, associated data, …

Authenticated Encryption Schemes


