
BASICS OF
PUBLIC-KEY

CRYPTOGRAPHY

VITALY SHMATIKOV

RSA was described for
the first time in the
August 1977 issue of
“Scientific American”

? private key

public key

public key

Alice Bob

Public-Key Cryptography

Encryption for confidentiality

Digital signatures for authentication

Session key establishment

Anyone can encrypt a message
Only someone who knows the private key can decrypt
Secret keys are only stored in one place

Only someone who knows the private key can sign

Exchange messages to create a secret session key
Then switch to symmetric cryptography (why?)

Public-Key Encryption

Key generation: computationally easy to generate a pair (public key PK, private key SK)

Encryption: given plaintext M and public key PK, easy to compute ciphertext C=EPK(M)

Decryption: given ciphertext C=EPK(M) and private key SK, easy to compute plaintext M
◦ Infeasible to learn anything about M from C without SK

◦ “Trapdoor” function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts

◦ Euler totient function j(n) where n³1 is the number of
integers in the [1,n] interval that are relatively prime to n
◦ Two numbers are relatively prime if their greatest common divisor

(gcd) is 1

◦ Euler’s theorem:

if aÎZn*, then aj(n) º 1 mod n

◦ Special case: Fermat’s Little Theorem

if p is prime and gcd(a,p)=1, then ap-1 º 1 mod p

RSA Cryptosystem

Key generation:
◦ Generate large primes p, q and compute n=pq
◦ At least 2048 bits each… need primality testing!

◦ Note that j(n)=(p-1)(q-1)

◦ Choose small e, relatively prime to j(n)
◦ Typically, e=3 (may be vulnerable) or e=216+1=65537 (why?)

◦ Compute unique d such that ed º 1 mod j(n)
◦ Public key = (e,n); private key = d

Encryption of m: c = me mod n

Decryption of c: cd mod n = (me)d mod n = m

Rivest, Shamir, Adleman

Why RSA Decryption Works

◦ e×d º 1 mod j(n)

◦ Thus e×d = 1+k×j(n) = 1+k(p-1)(q-1) for some k

◦ If gcd(m,p)=1, then by Fermat’s Little Theorem, mp-1 º 1 mod p

◦ Raise both sides to the power k(q-1) and multiply by m, obtaining m1+k(p-1)(q-1) º m mod p

◦ Thus med º m mod p

◦ By the same argument, med º m mod q

◦ Since p and q are distinct primes and p×q=n,

med º m mod n

Why Is RSA Secure?

RSA problem: given c, n=pq, and e such that gcd(e,(p-1)(q-1))=1,
find m such that me=c mod n
◦ That is, recover m from ciphertext c and public key (n,e) by taking eth root

of c modulo n
◦ There is no known efficient algorithm for doing this

Factoring problem: given positive integer n, find primes p1, …, pk

such that n=p1
e1p2

e2…pk
ek

If factoring is easy, then RSA problem is easy, but may be possible
(believed unlikely) to break RSA without factoring n

Algorithm Year Algorithm Time

RSA-400 1993 Quadratic
sieve

830 MIPS
years

RSA-478 1994 Quadratic
sieve

5000 MIPS
years

RSA-515 1999 Number-
field sieve

8000 MIPS
years

RSA-768 2009 Number-
field sieve

~2.5 years

RSA-x is an RSA challenge
modulus of size x bits

Nowadays, minimal recommended size is 2048-bit modulus
Exponentiation in O(log N), and so size impacts performance

Factoring Records

“Textbook”
RSA Is Bad
Encryption

Deterministic
◦ Attacker can guess plaintext, compute

ciphertext, and compare for equality
◦ If messages are from a small set (for

example, yes/no), can build a table of
corresponding ciphertexts

Can tamper with encrypted messages,
no integrity protection
◦ Take an encrypted auction bid c and

submit c(101/100)e mod n instead

Does not provide security against
chosen-plaintext attacks

Integrity in RSA
Encryption

“Textbook” RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create
encryption of m1×m2 because (m1

e) × (m2
e) mod n º

(m1×m2)e mod n
• Attacker can convert m into mk without decrypting

because (me)k mod n º (mk)e mod n

In practice, OAEP is used: instead of encrypting M,
encrypt MÅG(r) ; rÅH(MÅG(r))

• r is random and fresh, G and H are hash functions
• Resulting encryption is “plaintext-aware”: infeasible to

compute a valid encryption without knowing plaintext…
assuming hash functions are “good” and the RSA
problem is hard

Always use standard hashing
and padding with RSA…
better yet, use a good library
implementation

Choose fresh
symmetric key K

C = Enc(pk,K,R)

Has (pk,sk) pair

Server picks long-lived (pk,sk) pair; pk sent to client (how?)

pk

K <- Dec(sk,C)

Ciphertext C sent to server; server decrypts using sk

Client encrypts a fresh session key K using pk and some fresh randomness R

Session Key Establishment

Choose fresh
symmetric key K

C = Enc(pk,K,R)

pk

K <- Dec(sk,C)

Record encrypted transcript

Sometime later… break in and steal sk

Can adversary recover K? Yes!

We want a key exchange protocol that provides forward secrecy:
later compromises don’t reveal previous sessions.

Forward Secrecy?

Has (pk,sk) pair

Why?

Diffie-Hellman Protocol

Alice and Bob never met and share no secrets

Public info: p and g
◦ p is a large prime number, g is a generator of Zp*,
◦ Zp*={1, 2 … p-1}; "aÎZp* $i such that a=gi mod p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Hellman and Diffie

Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem: given gx mod p, hard to extract x
◦ There is no known efficient algorithm for doing this

◦ This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem: given gx and gy, hard to compute gxy mod p
◦ … unless you know x or y, in which case it’s easy

Decisional Diffie-Hellman (DDH) problem:

given gx and gy, hard to tell the difference between gxy mod p and gr mod p where r is random

Properties of Diffie-Hellman

Assuming the DDH problem is hard, Diffie-Hellman protocol is a secure key
establishment protocol against passive attackers
◦ Eavesdropper can’t tell the difference between the established key and a random value

◦ Can use the new key for symmetric cryptography

Need an authentication mechanism in addition to Diffie-Hellman
◦ Examples: TLS, IPsec

Modern implementations (eg, Signal and WhatsApp) use Elliptic-Curve Diffie-Hellman

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: 1. To compute a signature on a message, must know the private key
2. To verify a signature, only need the public key (anyone can verify)

Alice Bob

Digital Signatures: Basic Idea
public key

public key

RSA Signatures

Public key is (n,e), private key is d

To sign message m: s = hash(m)d mod n
◦ Signing and decryption are the same mathematical operation in RSA

To verify signature s on message m: se mod n = (hash(m)d)e mod n = hash(m)
◦ Verification and encryption are the same mathematical operation in RSA

Message must be hashed and padded (why?)

Digital Signature Algorithm (DSA)

U.S. government standard (1991-94)
◦ Modification of the ElGamal signature scheme (1985)

Key generation:
◦ Generate large primes p, q such that q divides p-1
◦ 2159 < q < 2160, 2511+64t < p < 2512+64t where 0£t£8

◦ Select hÎZp* and compute g=h(p-1)/q mod p

◦ Select random x such 1£x£q-1, compute y=gx mod p

Public key: (p, q, g, gx mod p), private key: x

Security of DSA requires hardness of discrete log
◦ If one can take discrete logarithms, then can extract x (private key) from gx mod p (public key)

Modern implementations use
elliptic-curve cryptography (ECDSA)

Message

Hash function

Random secret
between 0 and q

r = (gk mod p) mod q

Private key

s = k-1×(H(M)+x×r) mod q

(r,s) is the
signature on M

DSA: Signing a Message

DSA: Verifying a Signature

Message

Signature

w = s’-1 mod q

Compute
(gH(M’)w × yr’w mod q mod p) mod q

Public key

If they match, signature is valid

Why DSA Verification Works

◦ If (r,s) is a valid signature, then r º (gk mod p) mod q ; s º k-1×(H(M)+x×r) mod q

◦ Thus H(M) º -x×r+k×s mod q

◦ Multiply both sides by w=s-1 mod q, obtain H(M)×w + x×r×w º k mod q

◦ Exponentiate g to both sides, obtain (gH(M)×w + x×r×w º gk) mod p mod q

◦ In a valid signature, gk mod p mod q = r, gx mod p = y

◦ Verify gH(M)×w×yr×w º r mod p mod q

Security of DSA

Can’t create a valid signature without private key

Can’t change or tamper with signed message

If the same message is signed twice, signatures are different
◦ Each signature is based in part on random secret k

Random secret k must be different for each signature!
◦ If k is leaked or if two messages re-use the same k, attacker can recover

the private key and forge any signature from then on

Standard security
requirements for any
digital signature scheme

PS3 Epic Fail

Sony used ECDSA (DSA on elliptic curves) to sign authorized software
for Playstation 3 … with the same random value in every signature

Trivial to extract master signing key and sign any homebrew software –
perfect “jailbreak” for PS3 (Dec 2010)

Q: Why didn’t Sony just revoke the key?

George “Geohot” Hotz

https://programmingwithstyle.com/posts/howihackedmycar/

2021 Hyundai Ioniq SEL
The OS for the infotainment system is D-Audio2V by Hyundai Mobis,
some of its source code is available

Where Do Keys Come From?

https://programmingwithstyle.com/posts/howihackedmycar/

Googling the key…

What About Public Keys?

https://programmingwithstyle.com/posts/howihackedmycar/

http://hayageek.com/rsa-encryption-decryption-openssl-c/

Using Cryptography

Don’t roll your own!

Don’t try to implement
cryptographic algorithms

Do use standard libraries and APIs…
correctly!

Do generate your own random keys!

