

The Core Problem of Authentication

How do you prove to someone that you are who you claim to be?
Any system with access control must solve this problem

- What you know: password, PIN, answers to questions only you know
- What you are: biometrics
- What you have: phone number, mobile device, secure token
- Where you are: IP address, geolocation
- Someone/something knows you: single sign-on (Cornell NetID), PKI

Authentication vs. Authorization \& Access Control

- Authentication: is the user (or program) who they claim they are?
- Authorization: should user (or program) have access to a given resource?
- Authorization decisions rely on correct authentication
- Access control: policy and enforcement mechanism

Password-Based Authentication

User has a secret password. System checks it to authenticate the user.

- How is the password communicated?
- How is the password stored?
- How does the system check the password?
- How easy is it to guess the password?

Easy to deploy
Easy to use (nothing to carry, etc.)
No simple alternative

Attacks on Passwords

Online

- Try to guess passwords by logging to a live system

Offline

- Try to guess passwords in the (typically stolen) password database
- Pre-computation can make offline attacks very fast

Phishing

- Trick user into disclosing their password
- Spear-phishing: phishing a specific user with personalized attacks

Passwords Are

 The Bane of Computer SecurityPhishing and use of stolen credentials are the top two hacking techniques

- Source: Verizon Data Breach Investigations Report First step after any successful intrusion: install sniffer or keylogger to steal more passwords
Then run cracking tools on password files
- Modern systems usually do not store passwords in the clear (how are they stored?)

In August 2021, a 21-year-old hacker scanned T-Mobile's known Internet addresses

Discovered an unprotected router, used it to gain access to a data center near East Wenatchee, WA

Login credentials stored in the data center provided access to 100 more servers

T-Mobile Says Hack Exposed Personal Data of 40 Million People

The company said that stolen files included the personal information of 7.8 million current customers and 40 million people who had applied for credit.

Hackers breached Colonial Pipeline with one compromised password

The password has since been discovered inside a batch of leaked passwords on the dark web.

Hackers gained entry into the networks of Colonial Pipeline Co. on April 29 through a virtual private network account, which allowed employees to remotely access the company's computer network

The account's password has since been discovered inside a batch of leaked passwords on the dark web. That means a Colonial employee may have used the same password on another account that was previously hacked

The VPN account, which has since been deactivated, didn't use multifactor authentication, a basic cybersecurity tool, allowing the hackers to breach Colonial's network using just a compromised username and password.

This Agency's Computers Hold Secrets. Hackers Got In With One Password.

Hackers used one worker's login information to penetrate the Law Department's network after officials failed to implement a simple security measure.

New York City's Law Department holds some of the city's most closely guarded secrets: evidence of police misconduct, the identities of young children charged with serious crimes, plaintiffs' medical records and personal data for thousands of city employees.
the hack was enabled by the Law Department's failure to implement a basic safequard, known as multifactor authentication, more than two years after the city began requiring it

From Here to Eternity

Examples from Mitnick's "Art of Intrusion"

- U.S. District Courthouse server: "public" / "public"
- NY Times employee database: pwd = last 4 SSN digits
- "Dixie bank": break into router (pwd="administrator"), then into bank server ($p w d=$ "administrator"), install keylogger to snarf other passwords
- "99\% of people there used password123 as their password"

Mirai botnet (2016)

- Used default passwords in loT devices (Internet cameras, home routers, etc.) to stage a massive distributed denial-of-service flooding attack

From Mirai's Source Code

Username	Password	guest	fuest
		mother	
666666	666666		
888888	888888	root	(none)
		root	00000000
admin	(none)	root	1111
admin	1111		(1)
admin	1111111	root	1234
admin	1234	root	12345
admin	12345	root	123456
admin	123456	root	54321
admin	54321	root	666666
admin	7ujMkoOadmin	root	7ujMkoOadmin
admin	admin	root	7ujMkoOvizxv
admin	admin1234	root	888888
admin	meinsm	root	admin
admin	pass	root	anko
admin	password	root	default
admin	smcadmin	root	dreambox
admin1	password	root	hi3518
administrator	1234	root	ikwb
Administrator	admin	root	juantech
auest	12345	root	jvbzd

Hacker Group Says It Accessed Tesla's, Others' Internal Video-Surveillance Feeds

Exposed password to administrative account of security-camera vendor Verkada opened door to networks, hackers said

Tillie Kottmann, one of the hackers, said the group found a username and password for a Verkada administrative account on the internet, permitting
 them to obtain the footage. That included footage from 222 cameras placed inside various Tesla factories and warehouses, Kottmann said in a message. In all, the group could have accessed material from 150,000 Verkada cameras

rockyou'" Hack (2009)

- "Social gaming" company
- Database with 32 million user passwords from partner social networks
- Passwords stored in the clear
- December 2009: entire database hacked using a SQL injection attack and posted on the Internet

Passwords in the RockYou Database

Password Popularity - Top 20

Rank	Password	Number of Users with Password (absolute)
1	123456	290731
2	12345	79078
3	123456789	76790
4	Password	61958
5	iloveyou	51622
6	princess	rockyou
7	1234567	35231
8	12345678	22588
9	abci23	21726
10		20553

Rank	Password	Number of Userswith Password (absolute)
11	Nicole	17168
12	Daniel	16409
13	babygirl	16094
14	monkey	15294
15	Jessica	15162
16	Lovely	14950
17	michael	14898
18	Ashley	14329
19	654321	13984
20	Qwerty	13856

Password Length Distribution

Gawker Passwords (2010)

2020: major attack on US government and several companies via a compromised update to SolarWinds network management software

The company used the password solarwinds 123 for a GitHub server
"I believe that was a password that an intern used on one of his Github servers back in 2017"

Company denied this was the source of the breach

SolarWinds CEO

Adobe Passwords (2013)

- 153 million account passwords
- 56 million of them unique
- Encrypted using 3DES in ECB mode rather than hashed (why is this important?)

"Collection \#1" (2018-2019)

Mother of All Breaches Exposes 773 Million Emails, 21 Million Passwords
... just a subset of the seller's offerings

How About PINs?

- In 2012, Nick Berry analyzed all four-digit passwords from previous leaks

	PIN	Freq
\#1	1234	10.713\%
\#2	1111	6.016\%
\#3	0000	1.881\%
\#4	1212	1.197\%
\#5	7777	0.745\%
\#6	1004	0.616\%
\#7	2000	0.613\%
\#8	4444	0.526\%
\#9	2222	0.516\%
\#10	6969	0.512\%
\#11	9999	0.451\%
\#12	3333	0.419\%
\#13	5555	0.395\%
\#14	6666	0.391\%
\#15	1122	0.366\%
\#16	1313	0.304\%
\#17	8888	0.303\%
\#18	4321	0.293\%
\#19	2001	0.290\%
\#20	1010	0.285\%

	PIN	Freq
$\# 9980$	8557	0.001191%
$\# 9981$	9047	0.001161%
$\# 9982$	8438	0.001161%
$\# 9983$	0439	0.001161%
$\# 9984$	9539	0.001161%
$\# 9985$	8196	0.001131%
$\# 9986$	7063	0.001131%
$\# 9987$	6093	0.001131%
$\# 9988$	6827	0.001101%
$\# 9989$	7394	0.001101%
$\# 9990$	0859	0.001072%
$\# 9991$	8957	0.001042%
$\# 9992$	9480	0.001042%
$\# 9993$	6793	0.001012%
$\# 9994$	8398	0.000982%
$\# 9995$	0738	0.000982%
$\# 9996$	7637	0.000953%
$\# 9997$	6835	0.000953%
$\# 9998$	9629	0.000953%
$\# 9999$	8093	0.000893%
$\# 10000$	8068	0.000744%

Memorability vs. Security

One bank's idea for making PINs "memorable"

- If PIN is 2256, write your favorite word in the grid

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{0}$
	\mathbf{b}				_				
Normally 9,999 choices for PIN -									
hard(er) to guess									

- Fill the rest with random letters

Cracking Techniques

Wordlists

- 20-500 million words and leaked passwords in publicly available lists

Mangling rules to generate variants

- Dozens of thousands of rules (Korelogic, Megatron, Generated2)
Cracking tools
- Example: John the Ripper, Hashcat

Password Mangling and Generation

Dictionary with words spelled backwards

All valid license
plate numbers in your state

Room numbers, telephone numbers, etc.

Same with uppercase initials

Letter substitutions and other tricks

If you can think of it, attacker will, too!

Social Engineering

Univ. of Sydney study (1996)

- 336 CS students emailed asking for their passwords
- Pretext: "validate" password database after suspected break-in
- 138 returned their passwords; 30 returned invalid passwords; 200 reset passwords (not disjoint)
Treasury Dept. report (2005)
- Auditors pose as IT personnel attempting to correct a "network problem"
- 35 of 100 IRS managers and employees provide their usernames and change passwords to a known value

Bezos, Musk, Gates, Obama and others target of cryptocurrency hack on Twitter

Jefferson Graham, Emre Kelly and Mike Snider USA TODAY

Published 5:42 p.m. ET Jul. 15, 2020 The Twitter accounts of prominent figures from the worlds of tech and money, celebrities, a presidential candidate and a former president were all hacked Wednesday in what was the largest breach in the company's history.

Bogus messages soliciting bitcoin appeared on the Twitter accounts for Tesla CEO Elon Musk, Microsoft co-founder Bill Gates, Amazon CEO and founder Jeff Bezos, Berkshire Hathaway CEO and president Warren Buffett, former President Barack Obama, presumptive Democratic candidate Joe Biden, former New York mayor Michael Bloomberg, Israeli Prime Minister Benjamin Netanyahu and the corporate accounts for Apple and Uber.

Celebrities were also targeted in the bitcoin scam including rapper Kanye West and his wife Kim Kardashian and rapper Wiz Khalifa.

Twitter said late Wednesday that it detected what it believes was a "coordinated social engineering attack by people who successfully targeted some of our employees with access to internal systems and tools."

July 2020 Twitter Hack

The social engineering that occurred on July 15, 2020, targeted a small number of employees through a phone spear phishing attack. A successful attack required the attackers to obtain access to both our internal network as well as specific employee credentials that granted them access to our internal support tools. Not all of the employees that were initially targeted had permissions to use account management tools, but the attackers used their credentials to access our internal systems and gain information about our processes. This knowledge then enabled them to target additional employees who did have access to our account support tools. Using the credentials of employees with access to these tools, the attackers targeted 130 Twitter accounts, ultimately Tweeting from 45, accessing the DM inbox of 36 , and downloading the Twitter Data of 7 .

How People Use Passwords

Write them down

Use a single password at multiple sites

- Do you use the same password for Amazon and your bank account? NetID? Do you remember them all?

Forget them... many services use "security questions" to reset passwords

- "What is your favorite pet's name?"
- Paris Hilton's T-Mobile cellphone hack

Sara Palin’s Email Hack

Reset password for gov.palin@yahoo.com

- No secondary email needed
- Date of birth? Wikipedia
- ZIP code? Wasilla has 2
- Where did you meet your spouse? Wikipedia, Google, ...

Changed pwd to "popcorn"
Hacker sentenced to 1 year in prison + 3 yrs of supervised release

5

The cryptic Internet posse know for
a new warget in Republican vice-presidentack on Scientology may have fo self-procaimed members of Anonyiyous, a loosedy o Saranh Palin. Severa personal Yahool oord 4 Chan, apparently breached thized group associated .natoo. account (gou:palin@yahoo.com) the Alaska governor's
Sisoore Lhins The harcer
 The hacker posted screen shot inbox, a contact list and severeral two e-mails, a Yahoo governmeng, asite that anonymmousy photos to government and corporate docin mously hosts leaked Ahrp Ahtur ins suoutes Shot purportedy shorows a drafte doments. Another screen

Problems with Security Questions

Inapplicable

- What high school did your spouse attend?

Not memorable

- Name of kindergarten teacher? Price of your first car?

Ambiguous

- Name of college you applied to but did not attend?

Easily guessable

- Age when you married? Year you met your spouse? Favorite president? Favorite color?

Automatically attackable (using public records!)

Answers Are Easy to Find Out... Or Easy to Forget

- Make of your first car?
- Until 1998, Ford had >25\% of market
- First name of your best friend?
- 10\% of males: James/Jim, John, Robert/Bob/Rob
- Name of your first / favorite pet?
- Max, Jake, Buddy, Bear...
- Top 500 (covers 65% of names) available online
- Information available from Facebook, etc.
- Where you went to school, college athletic rivals, favorite book/movie/pastime, high school mascot
- Name of the street, etc.
- More than one
- Name of your best friend?
- Friends change
- City where you were born?
- NYC? New York? Manhattan? New York City? Big Apple?
- People lie to increase security... then forget the answers

HealthCare.gov

Federal:

- What is a relative's telephone number that is not your own?
- Type a significant date in your life?
- What is the name of the manager at your first job?

Individual states:

- What is your youngest child's birth weight?
- What color was your first bicycle?
- If you needed a new first name, what would it be?
- What band poster did you have on your wall in high school?
- How many bones have you broken?

The Health Insurance Marketplace is Open!

Password Management

Countermeasure	Purpose
Password hashing	Database leak doesn't immediately reveal user passwords; slows offline guessing attacks
Strength meters	Nudge / force users to pick stronger passwords to mitigate guessing attacks
Lockout after N failed attempts	Prevent remote guessing attacks (X typically 10, 100, 1000); slows down / prevents online guessing attacks
Compromised credential checks	Check if password is in known breaches

Storing Passwords

Instead of user's password, store

Hash(password)

Password Hashing

When user enters a password, compute its hash and compare with the entry in the password file

- System does not store actual passwords
- Cannot go from hash to password (except by guessing the password)
Hash function H must have some properties

Cryptographic Hash

 FunctionsCryptographic hash function H maps any message to a short digest (e.g., 256-bit string)

- One-way:

Given $y=H(M)$, hard to compute M

- Collision-resistant:

Can't find M, M^{\prime} s.t. $H(M)=H\left(M^{\prime}\right)$
Good hash functions: SHA256, SHA512, SHA-3,
bcrypt, scrypt, PBKDF2 ..

- Deprecated hash functions. MD5, SHA-1

Passwords are not random

- With 52 upper- and lower-case letters, 10 digits and 32 punctuation symbols, there are $94^{8} \approx 6$ quadrillion possible 8-character passwords
- Humans like to use dictionary words, human and pet names ≈ 1 million common passwords
Attacker can pre-compute H(word) for every word in the dictionary - do this once offline
- Once password file is obtained, cracking is instantaneous
- Sophisticated password guessing tools are available (take into account frequency of letters, password patterns, etc.)

Brute-Force Password Cracking

```
[DaleGribble% openssl speed sha256
Doing sha256 for 3s on 16 size blocks: 16553803 sha256's in 3.00s
Doing sha256 for 3s on 64 size blocks: 9314565 sha256's in 3.00s
Doing sha256 for 3s on 256 size blocks: 4382195 sha256's in 3.00s
Doing sha256 for 3s on 1024 size blocks: 1382599 sha256's in 3.00s
Doing sha256 for 3s on 8192 size blocks: 187044 sha256's in 3.00s
Doing sha256 for 3s on 16384 size blocks: 94277 sha256's in 3.00s
```

~450,000 hashes per second
How many guesses / hashes needed to crack a password?
Also rainbow tables:
precompute huge number of hashes to make a quick-lookup table

Making Cracking Harder

- Make hashing slower to slow down cracking attacks
- Use random per-user salts to prevent use of rainbow tables
- PKCS\#5 approach:

- Memory-hard hashing: Scrypt and argon2 require lots of memory to compute as well as time

Salt

- Users with the same password have different entries in the password file
- Offline dictionary attack becomes much harder

Without salt, attacker can pre-compute hashes of all common passwords once

- Same hash function on all UNIX machines; identical passwords hash to identical values
- One table of hash values works for all password files With salt, attacker must compute hashes of all common passwords for each possible salt value
- With 12-bit random salt, the same password can hash to 4096 different hash values

Modern Hash Cracking

Hash type	Hashes / second	Passwords / month for 10M set ${ }^{\mathbf{3}}$	Brute force equivalent ${ }^{4}$
MD5 unsalted	$\sim^{\sim} 50 \mathrm{G}$	$\sim 130,000,000 \mathrm{G}$	~8-9 characters
MD5 salted ${ }^{5}$	$\sim 50 \mathrm{G}$	$\sim 13 \mathrm{G}$	~ 5 characters
MD5crypt (= salted, 1,000 x MD5)	$\sim_{22 M}$	${ }^{\sim} 5.6 \mathrm{M}$	~3-4 characters
Bcrypt (= salted, work factor 8)	~ 3500	~900	~1-2 characters

... with custom GPU and FPGA hardware

IBM X-Force "Cracken" (circa 2017)

Hashing slows down but does not prevent guessing attacks

Measuring Password Strength

Deprecated approaches for measuring password strength

- NIST entropy estimate
- Shannon entropy

Today: strength meters based on guess ranks

Shannon Entropy

- Let \boldsymbol{X} be password distribution
- Passwords are drawn iid from \boldsymbol{x}
- N is size of support of \boldsymbol{X}

Shannon entropy:

$$
H_{1}(\mathcal{X})=\sum_{i=1}^{N}-p_{i} \log p_{i}
$$

- $p_{1}, p_{2}, \ldots, p_{N}$ are probabilities of passwords in decreasing order

Poor Measure of Guessability

```
\(N=1,000,000\)
\(p_{1}=1 / 100\)
\(p_{2}=(1-1 / 100) / 999,999 \approx 1 / 2^{20}\)
\(\mathrm{p}_{\mathrm{N}}=(1-1 / 100) / 999,999 \approx 1 / 2^{20}\)
\(H_{1}(\boldsymbol{X}) \approx 19\)
```

19 bits of "unpredictability". Probability of success about $1 / 2^{19}$?

What is probability of success if attacker makes one guess?

RockYou Empirical Probability

Credential Stuffing (Password Spraying)

Attacker tries multiple credentials from known breaches

Is (Bob, 12345) in a public breach? If yes, ask user to choose new password

Third-party services for making such queries:

- HavelBeenPwned
- Google password checker

Have I Been Pwned

556
pwned websites

$11,454,726,823$
114,131
pastes
207,749,076 paste accounts

Largest breaches

772,904,991 Collection \#1 accounts
763,117,241 Verifications.io accounts
711,477,622 Onliner Spambot accounts
622,161,052 Data Enrichment Exposure From PDL Customer accounts

593,427,119 Exploit.In accounts
509,458,528 Facebook accounts
457,962,538 Anti Public Combo List accounts
393,430,309 River City Media Spam List accounts
uspyspace $359,420,698$ MySpace accounts

Recently added breaches

20,154,583 IndiaMART accounts
878,209 Imavex accounts
6,137,666 SubaGames accounts
2,789,609 Eatigo accounts
1,304,447 OrderSnapp accounts
2,660,295 MMG Fusion accounts
2,743,539 Audi accounts
112,031 Guntrader accounts
505,466 Short Édition accounts
shorder
se,433 Vastaamo accounts

STRONTIUM Attacks

Microsoft has tied STRONTIUM to a newly uncovered pattern of Office365 credential harvesting activity aimed at US and UK organizations directly involved in political elections
target: elections

spear-phishing to harvest credentials

password spraying

STRONTIUM relied heavily upon spear phishing in its credential harvesting efforts leading up to the 2016 US presidential election. In 2016, spear-phishing was the most common tactic for stealing credentials from targeted accounts. This time around, STRONTIUM appears to be taking a different approach, namely, brute-force/password-spray tooling. This shift in tactics, also made by several other nation-state actors, allows them to execute large-scale credential harvesting operations in a more anonymized manner. The tooling STRONTIUM is using routes its authentication attempts through a pool of approximately 1,100 IPs, the majority associated with the Tor anonymizing service.
cover tracks using Tor

Credential Tweaking Attacks

Suppose user changes password to 123456
Credential stuffing no longer works, but guessing attacker could try variants of 12345

Deep learning techniques to learn conditional probability distribution

- p(pw' | pw) where pw is leaked password, pw' is variant
- Trained from leak data to capture typical password variants

Experiments showed that 1,316 Cornell accounts vulnerable (Pal et al. 2019)

Interventions	Best practices from prior research	Our key findings
Blocklists \times This password has been leaked in a data breach, it must not be used. Please use another password. Now Password Password our algonthm deems weak will be rejected Password must be at least 8 characters long \qquad Re-enter new password 	- Do check users' passwords against lists of leaked and easily-guessed passwords [1, 2, 3, 4]. - Do reject the password if it appears on a blocklist, prompt the user to select a different password [1, 4].	- More than half $(71 / 120)$ of websites do not check passwords at all, allowing all 40 of the most common passwords we tested (e.g., "12345678", "rockyou"). - 19 more websites block less than half of the most common passwords we tested.
Strength meters and minimum-strength requirements Enter password 000000001	- Do provide real-time password strength estimates $[5,6,7]$. - Do set minimum-strength requirements by estimating guessability (the number of guesses it would take for an adversary to crack the password) [3, 8, 9, 10, 11].	- Only 23 / 120 websites used password strength meters. - Of those 23,10 websites misuse meters as nudges toward specific types of characters and do not incorporate any notion of guessability.
Composition policies Password \square Must have more than 8 characters Must have at least one number Must have upper \& lowercase letters	- Do not require specific character classes; let users freely construct passwords [2, 3, 7, 12]. - NIST: Do set a minimum-length of at least 8 characters.	- 54 / 120 sites still require specific character classes such as digits or special characters. - We devised a new method to measure the security and usability of composition policies. Based on our method, we found that all 120 policies performed poorly: none provided $\geq 60 \%$ security and usability simultaneously.

Password Policies

I AM MORDAC, THE PREVENTER OF INFORMATION SERVICES. I BRING NEW GUIDELINES FOR PASSWORDS.	"ALL PASSWORDS MUST BE AT LEAST SIX CHARACTERS LONG... INCLUDE NUMBERS AND LETTERS ... INCLUDE A MIX OF UPPER AND LOWER CASE..."	"USE DIFFERENT PASSWORDS FOR EACH SYSTEM CHANGE ONCE A MONTH. DO NOT WRITE ANYTHING DOWN:

Restrictive Password Policies Don’t Help

Overly restrictive password policies...

- 7 or 8 characters, at least 3 out of \{digits, upper-case, lower-case, non-alphanumeric\}, no dictionary words, change every 4 months, password may not be similar to previous 12 passwords...
... result in frustrated users and less security
- Burdens of devising, learning, forgetting passwords
- Users construct passwords insecurely, write them down
- Can't use their favorite password construction techniques (small changes to old passwords, etc.)
- "An item on my desk, then add a number to it"
- Heavy password re-use across systems

Password Management

> 5 minutes to brainstorm ideas for how to improve password-based authentication

Managing Credentials

@colmmacc

A quick rage-thread about credentials. When security auditors just say things like "Critical credentials need to be rotated every 90 days" you need to fire them into the sun with urgency. Here's what you actually need ...

1:57 PM • Jun 1, 2022 • Twitter Web App

1. Rotation does nothing. It's revocation that matters. You always need a well-tested mechanism to make sure that you can remove or invalidate a credential that has been compromised.
2. Have closed loops. Deactivated credentials are a common source of outages. When introducing a new credential you see it everywhere it needs to be before using it. When you remove one, you need to see it gone from use before deactivating.
3. Logging and detective controls are key. You need to be able to see when and where a credential is being used. This is important for operational safety and security. How would you even detect a stolen credential without this?
4. Be INCREDIBLY wary of time-based expiry. Use only when there is no other option (e.g. public SSL certificates). There's really no way to win with time-based expiry. If your expiry time is something like a year, you don't get much security. Are you ok with an attacker using that cred for a year? So you still need revocation. If your expiry time is very short, like hours, are you *always* going to beat that renewal deadline? got good clocks?
5. Store credentials only where they are needed. This seems obvious but is rarely done. In particular it's common to see "treasure trove" secret-distribution control-planes that know all of the credentials.
6. If there is no reason to suspect credential disclosure or misuse, leave it alone. Replacing credentials usually exposes them to more systems, at least temporarily.
7. Asymmetric cryptography when you can, if not then choose between either memory-hard compute-hard hashing or derived-key symmetric auth depending on what fits your use-case. Avoid storing valuable secrets server side..
8. Keep credentials inside one-way enclaves like TPMs, TEEs, HSMs, when you can. Best line of defense is to keep credentials inaccessible.
9. If you can't write down a common password comparison side-channel from memory, do not implement your own authentication.
10. Check for all-zeroes creds, and repeated values. You can do this with hashing, you don't need to record the secrets. Coding errors, failures of entropy systems, and erasure mistakes are common enough to make this check worth doing.

All attacks on authentication we'll see in this course violate one or more of these rules

Multi-Factor Authentication

Factors for 2FA

Combine passwords with another way to authenticate user Second factor is usually proof of ownership of ...

- Email address
- Telephone number (via SMS)
- Device (via authenticator app)
- Hardware token (one-time-password token, universal second factor U2F token)

Effectiveness of 2FA

Microsoft: 99.9\% of compromised accounts did not use multi-factor authentication

Only 11\% of all enterprise accounts use a MFA solution overall.
Microsoft report, Mar 2020
successfully auto-enabled 2SV for over 150 million people, and we've also required it for oyer 2 million of our YouTube creators. As a result of this effort, we have seen a 50\% decrease in accounts being compromised among those users.

SMS Authentication

Suppose you know someone's password (e.g., due to breach) but their account is protected by SMS-based 2FA. What can you do as an attacker?

Circumventing SMS-Based 2FA

- Have physical access to device that receives SMS
- Phishing attacks: confuse or trick user into disclosing SMS to you
- SIM swap. trick phone company into registering victim's phone \# to your device
- SMS hijacking: exploit vulnerabilities in cellular network
- https://berlin.ccc.de/~tobias/31c3-ss7-locate-track-manipulate.pdf
- [Doerfler et al. 2019]: SMS 2FA circumvented in ~4\% of phishing attacks, ~26\% of targeted attacks
- Better practice: authenticator app or hardware token

SMS Rerouting

A Hacker Got All My Texts for \$16

A gaping flaw in SMS lets hackers take over phone numbers in minutes by simply paying a company to reroute text messages.

The OSR database is a core component of the mescane routing infrastructure in North America
It is known as an "override registry" as it enables an individual subscriber to receive messaging services from a different provider than voice services.
"I used a prepaid card to buy their $\$ 16$ per month plan and then after that was done it let me steal numbers just by filling out LOA info with fake info," Lucky225 added, referring to a Letter of Authorization, a document saying that the signer has authority to switch telephone numbers.

Not SIM swapping or phone number hijacking
The victim doesn't notice (phone service not interrupted)

Duo 2FA Authentication

2020 SolarWinds Hack

Compromised computer networks across the US government

- Pentagon, State, Treasury, Energy, Justice, Commerce, Labor, DHS, NIH ...
Many state and local governments
Many corporations
- Microsoft, Intel, Cisco, network security firms such as FireEye
18,000 customers in total

Software Development: Continuous Integration

Malicious functionality introduced into the executable code during the build process

Deployed to all customers of Orion network management product

SolarWinds hackers have a clever way to bypass multifactor authentication

... the attacker had accessed the Duo integration secret key (akey) from the OWA server. This key then allowed the attacker to derive a precomputed value to be set in the duo-sid cookie. After successful password authentication, the server evaluated the duo-sid cookie and determined it to be valid. This allowed the attacker with knowledge of a user account and password to then completely bypass the MFA set on the account.

More about Web authentication later

Credential Hopping (SolarWinds Hack)

Over 90 percent of Gmail users still don't use two-factor authentication

The security tool adds another layer of security if your password has been stolen By Thuy Ong | @ThuyOng | Jan 23, 2018, 8:30am EST

Usability remains a key issue preventing adoption

Location-based authentication

- IP-based geolocation

Other
Authentication Signals

Device identification

- Cookies, device fingerprinting

Behavioral cues

- Typical actions on platform (even after authenticated)

Biometrics

- Fingerprints, etc

Simple typos in passwords cause 3\% of Dropbox users to be unable to login in a 24-hour period [Chatterjee et al. 2016]
 Authentication Is a Huge Pain
 52% of users fail login challenges at Google, 3% don't get in within short period of time [Doerfler et al. 2019]

In-class 5-minute exercise:
 How would you securely authorize browser to access
 www.cornell.edu/account.html?user=vitaly based on authentication to identity.cornell.edu?

Identity provider handles authentication

- Google, Facebook, proprietary services, etc.

Identity provider
(e.g., identity.cornell.edu)

Relying party (RP)
(e.g., account.html?user=vitaly)

Single Sign-On (SSO)

Many standards and systems: SAML, OpenID Connect + OAuth 2.0, ...

Strengthening Passwords

Add biometrics

- For example, keystroke dynamics or voiceprint
- Revocation is often a problem with biometrics

Graphical passwords

- Goal: increase the size of memorable password space
- Dictionary attacks are believed to be difficult because images are very "random" - is this true?

PixelPin

Upload a picture,
random?
use 3 or more points as the "password"

Images + Story

Invent a story for an image or a sequence of images

> "We went for a walk in the park yesterday"

Fish-woman-girl-corn

Need to remember the order!

'Person, woman, man, camera, TV': Trump insists cognitive test was difficult

US president's pride in his own mental agility on display during interview in which he lists five things repeatedly

50\% unable to invent a story, so try to pick four pleasing pictures and memorize their order

- "I had no problem remembering the four pictures, but I could not remember the original order"
- "... on the third try I found a sequence that I could remember, fish-woman-girl-corn. I would screw up the fish and corn order 50% of the time, but I knew they were the pictures"

Picture selection biases

- Males select nature and sports more than females
- Females select food images more often

Mobile phones,
Alternatives to Passwords

One [1D © M-Pin" ficomeren

 (1)

 (1)
 LaunchKey

CRYOKEY

Passkeys

- Unique value for each site
- Generated by the client-side OS using biometrics (Face ID, Touch ID)

One-Time Passwords

Idea: use a shared secret to derive a one-time password

If the attacker eavesdrops on the network, he'll learn this password but it will be useless for future logins

Challenge-Response

Why is this better than the password over a network?

- User and system share a secret (key or password)
- Challenge: system presents user with some string
- Response: user computes the response based on the secret and the challenge
- Secrecy: difficult to recover secret from response
- Cryptographic hashing or symmetric encryption work well
- Freshness: if the challenge is fresh, attacker on the network cannot replay an old response
- Fresh random number, counter, timestamp.
- Good for systems with pre-installed secret keys
- Car keys; military friend-or-foe identification

SecurID

 \square

- Allow for skew in the counter value
- 5-minute clock skew by default

